Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycae043, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38707844

RESUMO

While several environmental factors contribute to the evolutionary diversification of the pathogenic bacterium Pseudomonas aeruginosa during cystic fibrosis lung infections, relatively little is known about the impact of the surrounding microbiota. By using in vitro experimental evolution, we show that the presence of Stenotrophomonas maltophilia, Staphylococcus aureus, or them both, prevent the evolution of loss of virulence, which repeatedly occurs in the absence of these species due to mutations in regulators of the Pseudomonas Quinolone Signal quorum sensing system, vqsM and pqsR. Moreover, the strength of the effect of co-occurring species is attenuated through changes in the physical environment by the addition of mucin, resulting in selection for phenotypes resembling those evolved in the absence of the co-occurring species. Together, our findings show that variation in mucosal environment and the surrounding polymicrobial environment can determine the evolutionary trajectory of P. aeruginosa, partly explaining its diversification and pathoadaptation from acute to chronic phenotype during cystic fibrosis lung infections.

2.
mBio ; 15(6): e0301623, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38780276

RESUMO

Bacteriophages, viruses that specifically target plant pathogenic bacteria, have emerged as a promising alternative to traditional agrochemicals. However, it remains unclear how phages should be applied to achieve efficient pathogen biocontrol and to what extent their efficacy is shaped by indirect interactions with the resident microbiota. Here, we tested if the phage biocontrol efficacy of Ralstonia solanacearum phytopathogenic bacterium can be improved by increasing the phage cocktail application frequency and if the phage efficacy is affected by pathogen-suppressing bacteria already present in the rhizosphere. We find that increasing phage application frequency improves R. solanacearum density control, leading to a clear reduction in bacterial wilt disease in both greenhouse and field experiments with tomato. The high phage application frequency also increased the diversity of resident rhizosphere microbiota and enriched several bacterial taxa that were associated with the reduction in pathogen densities. Interestingly, these taxa often belonged to Actinobacteria known for antibiotics production and soil suppressiveness. To test if they could have had secondary effects on R. solanacearum biocontrol, we isolated Actinobacteria from Nocardia and Streptomyces genera and tested their suppressiveness to the pathogen in vitro and in planta. We found that these taxa could clearly inhibit R. solanacearum growth and constrain bacterial wilt disease, especially when combined with the phage cocktail. Together, our findings unravel an undiscovered benefit of phage therapy, where phages trigger a second line of defense by the pathogen-suppressing bacteria that already exist in resident microbial communities. IMPORTANCE: Ralstonia solanacearum is a highly destructive plant-pathogenic bacterium with the ability to cause bacterial wilt in several crucial crop plants. Given the limitations of conventional chemical control methods, the use of bacterial viruses (phages) has been explored as an alternative biological control strategy. In this study, we show that increasing the phage application frequency can improve the density control of R. solanacearum, leading to a significant reduction in bacterial wilt disease. Furthermore, we found that repeated phage application increased the diversity of rhizosphere microbiota and specifically enriched Actinobacterial taxa that showed synergistic pathogen suppression when combined with phages due to resource and interference competition. Together, our study unravels an undiscovered benefit of phages, where phages trigger a second line of defense by the pathogen-suppressing bacteria present in resident microbial communities. Phage therapies could, hence, potentially be tailored according to host microbiota composition to unlock the pre-existing benefits provided by resident microbiota.


Assuntos
Bacteriófagos , Microbiota , Doenças das Plantas , Ralstonia solanacearum , Rizosfera , Microbiologia do Solo , Solanum lycopersicum , Ralstonia solanacearum/virologia , Ralstonia solanacearum/fisiologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Bacteriófagos/fisiologia , Bacteriófagos/isolamento & purificação , Actinobacteria/virologia
3.
Nat Commun ; 15(1): 3654, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688912

RESUMO

The horizontal transfer of plasmids has been recognized as one of the key drivers for the worldwide spread of antimicrobial resistance (AMR) across bacterial pathogens. However, knowledge remain limited about the contribution made by environmental stress on the evolution of bacterial AMR by modulating horizontal acquisition of AMR plasmids and other mobile genetic elements. Here we combined experimental evolution, whole genome sequencing, reverse genetic engineering, and transcriptomics to examine if the evolution of chromosomal AMR to triclosan (TCS) disinfectant has correlated effects on modulating bacterial pathogen (Klebsiella pneumoniae) permissiveness to AMR plasmids and phage susceptibility. Herein, we show that TCS exposure increases the evolvability of K. pneumoniae to evolve TCS-resistant mutants (TRMs) by acquiring mutations and altered expression of several genes previously associated with TCS and antibiotic resistance. Notably, nsrR deletion increases conjugation permissiveness of K. pneumoniae to four AMR plasmids, and enhances susceptibility to various Klebsiella-specific phages through the downregulation of several bacterial defense systems and changes in membrane potential with altered reactive oxygen species response. Our findings suggest that unrestricted use of TCS disinfectant imposes a dual impact on bacterial antibiotic resistance by augmenting both chromosomally and horizontally acquired AMR mechanisms.


Assuntos
Bacteriófagos , Klebsiella pneumoniae , Plasmídeos , Triclosan , Triclosan/farmacologia , Plasmídeos/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/virologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , Farmacorresistência Bacteriana Múltipla/genética , Mutação , Transferência Genética Horizontal , Sequenciamento Completo do Genoma , Evolução Molecular , Antibacterianos/farmacologia
4.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38678007

RESUMO

While the One Health framework has emphasized the importance of soil microbiomes for plant and human health, one of the most diverse and abundant groups-bacterial viruses, i.e. phages-has been mostly neglected. This perspective reviews the significance of phages for plant health in rhizosphere and explores their ecological and evolutionary impacts on soil ecosystems. We first summarize our current understanding of the diversity and ecological roles of phages in soil microbiomes in terms of nutrient cycling, top-down density regulation, and pathogen suppression. We then consider how phages drive bacterial evolution in soils by promoting horizontal gene transfer, encoding auxiliary metabolic genes that increase host bacterial fitness, and selecting for phage-resistant mutants with altered ecology due to trade-offs with pathogen competitiveness and virulence. Finally, we consider challenges and avenues for phage research in soil ecosystems and how to elucidate the significance of phages for microbial ecology and evolution and soil ecosystem functioning in the future. We conclude that similar to bacteria, phages likely play important roles in connecting different One Health compartments, affecting microbiome diversity and functions in soils. From the applied perspective, phages could offer novel approaches to modulate and optimize microbial and microbe-plant interactions to enhance soil health.


Assuntos
Bactérias , Bacteriófagos , Microbiota , Rizosfera , Microbiologia do Solo , Bacteriófagos/genética , Bactérias/virologia , Bactérias/genética , Transferência Genética Horizontal , Plantas/microbiologia , Plantas/virologia , Ecossistema
5.
Evol Lett ; 8(2): 253-266, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525025

RESUMO

While temperature has been shown to affect the survival and growth of bacteria and their phage parasites, it is unclear if trade-offs between phage resistance and other bacterial traits depend on the temperature. Here, we experimentally compared the evolution of phage resistance-virulence trade-offs and underlying molecular mechanisms in phytopathogenic Ralstonia solanacearum bacterium at 25 °C and 35 °C temperature environments. We found that while phages reduced R. solanacearum densities relatively more at 25 °C, no difference in the final level of phage resistance was observed between temperature treatments. Instead, small colony variants (SCVs) with increased growth rate and mutations in the quorum-sensing (QS) signaling receptor gene, phcS, evolved in both temperature treatments. Interestingly, SCVs were also phage-resistant and reached higher frequencies in the presence of phages. Evolving phage resistance was costly, resulting in reduced carrying capacity, biofilm formation, and virulence in planta, possibly due to loss of QS-mediated expression of key virulence genes. We also observed mucoid phage-resistant colonies that showed loss of virulence and reduced twitching motility likely due to parallel mutations in prepilin peptidase gene, pilD. Moreover, phage-resistant SCVs from 35 °C-phage treatment had parallel mutations in type II secretion system (T2SS) genes (gspE and gspF). Adsorption assays confirmed the role of pilD as a phage receptor, while no loss of adsorption was found with phcS or T2SS mutants, indicative of other downstream phage resistance mechanisms. Additional transcriptomic analysis revealed upregulation of CBASS and type I restriction-modification phage defense systems in response to phage exposure, which coincided with reduced expression of motility and virulence-associated genes, including pilD and type II and III secretion systems. Together, these results suggest that while phage resistance-virulence trade-offs are not affected by the growth temperature, they could be mediated through both pre- and postinfection phage resistance mechanisms.

6.
Elife ; 122023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37706503

RESUMO

While bacterial diversity is beneficial for the functioning of rhizosphere microbiomes, multi-species bioinoculants often fail to promote plant growth. One potential reason for this is that competition between different species of inoculated consortia members creates conflicts for their survival and functioning. To circumvent this, we used transposon insertion mutagenesis to increase the functional diversity within Bacillus amyloliquefaciens bacterial species and tested if we could improve plant growth promotion by assembling consortia of highly clonal but phenotypically dissimilar mutants. While most insertion mutations were harmful, some significantly improved B. amyloliquefaciens plant growth promotion traits relative to the wild-type strain. Eight phenotypically distinct mutants were selected to test if their functioning could be improved by applying them as multifunctional consortia. We found that B. amyloliquefaciens consortium richness correlated positively with plant root colonization and protection from Ralstonia solanacearum phytopathogenic bacterium. Crucially, 8-mutant consortium consisting of phenotypically dissimilar mutants performed better than randomly assembled 8-mutant consortia, suggesting that improvements were likely driven by consortia multifunctionality instead of consortia richness. Together, our results suggest that increasing intra-species phenotypic diversity could be an effective way to improve probiotic consortium functioning and plant growth promotion in agricultural systems.


Assuntos
Bacillus amyloliquefaciens , Probióticos , Bacillus amyloliquefaciens/genética , Rizosfera , Engenharia , Agricultura
7.
Mol Plant ; 16(9): 1379-1395, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37563832

RESUMO

The RIPENING-INHIBITOR (RIN) transcriptional factor is a key regulator governing fruit ripening. While RIN also affects other physiological processes, its potential roles in triggering interactions with the rhizosphere microbiome and plant health are unknown. Here we show that RIN affects microbiome-mediated disease resistance via root exudation, leading to recruitment of microbiota that suppress the soil-borne, phytopathogenic Ralstonia solanacearum bacterium. Compared with the wild-type (WT) plant, RIN mutants had different root exudate profiles, which were associated with distinct changes in microbiome composition and diversity. Specifically, the relative abundances of antibiosis-associated genes and pathogen-suppressing Actinobacteria (Streptomyces) were clearly lower in the rhizosphere of rin mutants. The composition, diversity, and suppressiveness of rin plant microbiomes could be restored by the application of 3-hydroxyflavone and riboflavin, which were exuded in much lower concentrations by the rin mutant. Interestingly, RIN-mediated effects on root exudates, Actinobacteria, and disease suppression were evident from the seedling stage, indicating that RIN plays a dual role in the early assembly of disease-suppressive microbiota and late fruit development. Collectively, our work suggests that, while plant disease resistance is a complex trait driven by interactions between the plant, rhizosphere microbiome, and the pathogen, it can be indirectly manipulated using "prebiotic" compounds that promote the recruitment of disease-suppressive microbiota.


Assuntos
Microbiota , Microbiologia do Solo , Rizosfera , Resistência à Doença , Raízes de Plantas/microbiologia , Plantas/microbiologia , Bactérias , Exsudatos e Transudatos
9.
Mol Ecol ; 32(15): 4259-4277, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37248617

RESUMO

While shaping of plant microbiome composition through 'host filtering' is well documented in legume-rhizobium symbioses, it is less clear to what extent different varieties and genotypes of the same plant species differentially influence symbiont community diversity and composition. Here, we compared how clover host varieties and genotypes affect the structure of Rhizobium populations in root nodules under conventional field and controlled greenhouse conditions. We first grew four Trifolium repens (white clover) F2 crosses and one variety in a conventional field trial and compared differences in root nodule Rhizobium leguminosarum symbiovar trifolii (Rlt) genotype diversity using high-throughput amplicon sequencing of chromosomal housekeeping (rpoB and recA) genes and auxiliary plasmid-borne symbiosis genes (nodA and nodD). We found that Rlt nodule diversities significantly differed between clover crosses, potentially due to host filtering. However, variance in Rlt diversity largely overlapped between crosses and was also explained by the spatial distribution of plants in the field, indicative of the role of local environmental conditions for nodule diversity. To test the effect of host filtering, we conducted a controlled greenhouse trial with a diverse Rlt inoculum and several host genotypes. We found that different clover varieties and genotypes of the same variety selected for significantly different Rlt nodule communities and that the strength of host filtering (deviation from the initial Rhizobium inoculant composition) was positively correlated with the efficiency of symbiosis (rate of plant greenness colouration). Together, our results suggest that selection by host genotype and local growth conditions jointly influence white clover Rlt nodule diversity and community composition.


Assuntos
Rhizobium leguminosarum , Rhizobium , Trifolium , Trifolium/genética , Medicago/genética , Rhizobium leguminosarum/genética , Simbiose/genética , Plantas
10.
Environ Microbiol ; 25(10): 1940-1954, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37254577

RESUMO

While water and sediment microbial communities exhibit pronounced spatio-temporal patterns in freshwater lakes, the underlying drivers are yet poorly understood. Here, we evaluated the importance of spatial and temporal variation in abiotic environmental factors for bacterial and microeukaryotic community assembly and distance-decay relationships in water and sediment niches in Hongze Lake. By sampling across the whole lake during both Autumn and Spring sampling time points, we show that only bacterial sediment communities were governed by deterministic community assembly processes due to abiotic environmental drivers. Nevertheless, consistent distance-decay relationships were found with both bacterial and microeukaryotic communities, which were relatively stable with both sampling time points. Our results suggest that spatio-temporal variation in environmental factors was important in explaining mainly bacterial community assembly in the sediment, possibly due lesser disturbance. However, clear distance-decay patterns emerged also when the community assembly was stochastic. Together, these results suggest that abiotic environmental factors do not clearly drive the spatial structuring of lake microbial communities, highlighting the need to understand the role of other potential drivers, such as spatial heterogeneity and biotic species interactions.


Assuntos
Lagos , Microbiota , Lagos/microbiologia , Filogenia , Bactérias/genética , Água
11.
ISME J ; 17(6): 916-930, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37031344

RESUMO

While decomposition of organic matter by bacteria plays a major role in nutrient cycling in terrestrial ecosystems, the significance of viruses remains poorly understood. Here we combined metagenomics and metatranscriptomics with temporal sampling to study the significance of mesophilic and thermophilic bacteria and their viruses on nutrient cycling during industrial-scale hyperthermophilic composting (HTC). Our results show that virus-bacteria density dynamics and activity are tightly coupled, where viruses specific to mesophilic and thermophilic bacteria track their host densities, triggering microbial community succession via top-down control during HTC. Moreover, viruses specific to mesophilic bacteria encoded and expressed several auxiliary metabolic genes (AMGs) linked to carbon cycling, impacting nutrient turnover alongside bacteria. Nutrient turnover correlated positively with virus-host ratio, indicative of a positive relationship between ecosystem functioning, viral abundances, and viral activity. These effects were predominantly driven by DNA viruses as most detected RNA viruses were associated with eukaryotes and not associated with nutrient cycling during the thermophilic phase of composting. Our findings suggest that DNA viruses could drive nutrient cycling during HTC by recycling bacterial biomass through cell lysis and by expressing key AMGs. Viruses could hence potentially be used as indicators of microbial ecosystem functioning to optimize productivity of biotechnological and agricultural systems.


Assuntos
Compostagem , Microbiota , Vírus , Vírus/genética , Archaea , Bactérias/genética , Microbiota/genética , Nutrientes
12.
Appl Environ Microbiol ; 89(3): e0181022, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36809072

RESUMO

The ecological drivers that direct the assembly of viral and host bacterial communities are largely unknown, even though viral-encoded accessory genes help host bacteria survive in polluted environments. To understand the ecological mechanism(s) of viruses and hosts synergistically surviving under organochlorine pesticide (OCP) stress, we investigated the community assembly processes of viruses and bacteria at the taxon and functional gene levels in clean and OCP-contaminated soils in China using a combination of metagenomics/viromics and bioinformatics approaches. We observed a decreased richness of bacterial taxa and functional genes but an increased richness of viral taxa and auxiliary metabolic genes (AMGs) in OCP-contaminated soils (from 0 to 2,617.6 mg · kg-1). In OCP-contaminated soils, the assembly of bacterial taxa and genes was dominated by a deterministic process, of which the relative significance was 93.0% and 88.7%, respectively. In contrast, the assembly of viral taxa and AMGs was driven by a stochastic process, which contributed 83.1% and 69.2%, respectively. The virus-host prediction analysis, which indicated Siphoviridae was linked to 75.0% of bacterial phyla, and the higher migration rate of viral taxa and AMGs in OCP-contaminated soil suggested that viruses show promise for the dissemination of functional genes among bacterial communities. Taken together, the results of this study indicated that the stochastic assembly processes of viral taxa and AMGs facilitated bacterial resistance to OCP stress in soils. Moreover, our findings provide a novel avenue for understanding the synergistic interactions between viruses and bacteria from the perspective of microbial ecology, highlighting the significance of viruses in mediating bioremediation of contaminated soils. IMPORTANCE The interaction between viral communities and microbial hosts has been studied extensively, and the viral community affects host community metabolic function through AMGs. Microbial community assembly is the process by which species colonize and interact to establish and maintain communities. This is the first study that aimed to understand the assembly process of bacterial and viral communities under OCP stress. The findings of this study provide information about microbial community responses to OCP stress and reveal the collaborative interactions between viral and bacterial communities to resist pollutant stress. Thereby, we highlight the importance of viruses in soil bioremediation from the perspective of community assembly.


Assuntos
Hidrocarbonetos Clorados , Microbiota , Praguicidas , Vírus , Solo , Bactérias , Microbiologia do Solo , Praguicidas/metabolismo , Hidrocarbonetos Clorados/metabolismo
13.
Metallomics ; 15(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36792066

RESUMO

Bacteria secrete siderophores whose function is to acquire iron. In recent years, the siderophores of several Chryseobacterium species were shown to promote the health and growth of various plants such as tomato or rice. However, the chemical nature of Chryseobacterium siderophores remained unexplored despite great interest. In this work, we present the purification and structure elucidation by nuclear magnetic resonance (NMR) spectroscopy and tandem mass spectrometry (MS/MS) of chryseochelin A, a novel citrate-based siderophore secreted by three Chryseobacterium strains involved in plant protection. It contains the unusual building blocks 3-hydroxycadaverine and fumaric acid. Furthermore, the unstable structural isomer chryseochelin B and its stable derivative containing fatty acid chains, named chryseochelin C, were identified by mass spectrometric methods. The latter two incorporate an unusual ester connectivity to the citrate moiety showing similarities to achromobactin from the plant pathogen Dickeya dadantii. Finally, we show that chryseochelin A acts in a concentration-dependent manner against the plant-pathogenic Ralstonia solanacearum strain by reducing its access to iron. Thus, our study provides valuable knowledge about the siderophores of Chryseobacterium strains, which have great potential in various applications.


Assuntos
Chryseobacterium , Sideróforos , Sideróforos/química , Ácido Cítrico , Espectrometria de Massas em Tandem , Ferro , Citratos
14.
Microbiome ; 11(1): 16, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36721270

RESUMO

BACKGROUND: Bacterial viruses, phages, play a key role in nutrient turnover and lysis of bacteria in terrestrial ecosystems. While phages are abundant in soils, their effects on plant pathogens and rhizosphere bacterial communities are poorly understood. Here, we used metagenomics and direct experiments to causally test if differences in rhizosphere phage communities could explain variation in soil suppressiveness and bacterial wilt plant disease outcomes by plant-pathogenic Ralstonia solanacearum bacterium. Specifically, we tested two hypotheses: (1) that healthy plants are associated with stronger top-down pathogen control by R. solanacearum-specific phages (i.e. 'primary phages') and (2) that 'secondary phages' that target pathogen-inhibiting bacteria play a stronger role in diseased plant rhizosphere microbiomes by indirectly 'helping' the pathogen. RESULTS: Using a repeated sampling of tomato rhizosphere soil in the field, we show that healthy plants are associated with distinct phage communities that contain relatively higher abundances of R. solanacearum-specific phages that exert strong top-down pathogen density control. Moreover, 'secondary phages' that targeted pathogen-inhibiting bacteria were more abundant in the diseased plant microbiomes. The roles of R. solanacearum-specific and 'secondary phages' were directly validated in separate greenhouse experiments where we causally show that phages can reduce soil suppressiveness, both directly and indirectly, via top-down control of pathogen densities and by alleviating interference competition between pathogen-inhibiting bacteria and the pathogen. CONCLUSIONS: Together, our findings demonstrate that soil suppressiveness, which is most often attributed to bacteria, could be driven by rhizosphere phage communities that regulate R. solanacearum densities and strength of interference competition with pathogen-suppressing bacteria. Rhizosphere phage communities are hence likely to be important in determining bacterial wilt disease outcomes and soil suppressiveness in agricultural fields. Video Abstract.


Assuntos
Bacteriófagos , Microbiota , Rizosfera , Bactérias/genética , Solo
15.
ISME J ; 17(3): 443-452, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635489

RESUMO

Volatile organic compounds (VOCs) produced by soil bacteria have been shown to exert plant pathogen biocontrol potential owing to their strong antimicrobial activity. While the impact of VOCs on soil microbial ecology is well established, their effect on plant pathogen evolution is yet poorly understood. Here we experimentally investigated how plant-pathogenic Ralstonia solanacearum bacterium adapts to VOC-mixture produced by a biocontrol Bacillus amyloliquefaciens T-5 bacterium and how these adaptations might affect its virulence. We found that VOC selection led to a clear increase in VOC-tolerance, which was accompanied with cross-tolerance to several antibiotics commonly produced by soil bacteria. The increasing VOC-tolerance led to trade-offs with R. solanacearum virulence, resulting in almost complete loss of pathogenicity in planta. At the genetic level, these phenotypic changes were associated with parallel mutations in genes encoding lipopolysaccharide O-antigen (wecA) and type-4 pilus biosynthesis (pilM), which both have been linked with outer membrane permeability to antimicrobials and plant pathogen virulence. Reverse genetic engineering revealed that both mutations were important, with pilM having a relatively larger negative effect on the virulence, while wecA having a relatively larger effect on increased antimicrobial tolerance. Together, our results suggest that microbial VOCs are important drivers of bacterial evolution and could potentially be used in biocontrol to select for less virulent pathogens via evolutionary trade-offs.


Assuntos
Bacillus , Ralstonia solanacearum , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Virulência/genética , Adaptação Fisiológica , Solo , Ralstonia solanacearum/genética , Doenças das Plantas/microbiologia
16.
Microbiol Spectr ; 10(6): e0184222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453898

RESUMO

The Pseudomonas aeruginosa bacterium is a common pathogen of cystic fibrosis (CF) patients due to its ability to evolve resistance to antibiotics during treatments. While P. aeruginosa resistance evolution is well-characterized in monocultures, it is less well-understood in polymicrobial CF infections. Here, we investigated how exposure to ciprofloxacin, colistin, or tobramycin antibiotics, administered at sub-minimum inhibitory concentration (MIC) doses, both alone and in combination, shaped the tolerance evolution of P. aeruginosa (PAO1 lab and clinical CF LESB58 strains) in the absence and presence of a commonly co-occurring species, Stenotrophomonas maltophilia. The increases in antibiotic tolerances were primarily driven by the presence of that antibiotic in the treatment. We observed a reciprocal cross-tolerance between ciprofloxacin and tobramycin, and, when combined, the selected antibiotics increased the MICs for all of the antibiotics. Though the presence of S. maltophilia did not affect the tolerance or the MIC evolution, it drove P. aeruginosa into extinction more frequently in the presence of tobramycin due to its relatively greater innate tobramycin tolerance. In contrast, P. aeruginosa dominated and drove S. maltophilia extinct in most other treatments. Together, our findings suggest that besides driving high-level antibiotic tolerance evolution, sub-MIC antibiotic exposure can alter competitive bacterial interactions, leading to target pathogen extinctions in multispecies communities. IMPORTANCE Cystic fibrosis (CF) is a genetic condition that results in thick mucus secretions in the lungs that are susceptible to chronic bacterial infections. The bacterial pathogen Pseudomonas aeruginosa is often associated with morbidity in CF and is difficult to treat due to its high resistance to antibiotics. The resistance evolution of Pseudomonas aeruginosa is poorly understood in polymicrobial infections that are typical of CF. To study this, we exposed P. aeruginosa to sublethal concentrations of ciprofloxacin, colistin, or tobramycin antibiotics in the absence and presence of a commonly co-occurring CF species, Stenotrophomonas maltophilia. We found that low-level antibiotic concentrations selected for high-level antibiotic resistance. While P. aeruginosa dominated in most antibiotic treatments, S. maltophilia drove it into extinction in the presence of tobramycin due to an innately higher tobramycin resistance. Our findings suggest that, besides driving high-level antibiotic tolerance evolution, sublethal antibiotic exposure can magnify competition in bacterial communities, which can lead to target pathogen extinctions in multispecies communities.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Stenotrophomonas maltophilia , Humanos , Pseudomonas aeruginosa/genética , Colistina/farmacologia , Colistina/uso terapêutico , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tobramicina/farmacologia , Tobramicina/uso terapêutico , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana
17.
BMC Genomics ; 23(1): 689, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36199029

RESUMO

BACKGROUND: Ralstonia solanacearum species complex (RSSC) strains are destructive plant pathogenic bacteria and the causative agents of bacterial wilt disease, infecting over 200 plant species worldwide. In addition to chromosomal genes, their virulence is mediated by mobile genetic elements including integrated DNA of bacteriophages, i.e., prophages, which may carry fitness-associated auxiliary genes or modulate host gene expression. Although experimental studies have characterised several prophages that shape RSSC virulence, the global diversity, distribution, and wider functional gene content of RSSC prophages are unknown. In this study, prophages were identified in a diverse collection of 192 RSSC draft genome assemblies originating from six continents. RESULTS: Prophages were identified bioinformatically and their diversity investigated using genetic distance measures, gene content, GC, and total length. Prophage distributions were characterised using metadata on RSSC strain geographic origin and lineage classification (phylotypes), and their functional gene content was assessed by identifying putative prophage-encoded auxiliary genes. In total, 313 intact prophages were identified, forming ten genetically distinct clusters. These included six prophage clusters with similarity to the Inoviridae, Myoviridae, and Siphoviridae phage families, and four uncharacterised clusters, possibly representing novel, previously undescribed phages. The prophages had broad geographical distributions, being present across multiple continents. However, they were generally host phylogenetic lineage-specific, and overall, prophage diversity was proportional to the genetic diversity of their hosts. The prophages contained many auxiliary genes involved in metabolism and virulence of both phage and bacteria. CONCLUSIONS: Our results show that while RSSC prophages are highly diverse globally, they make lineage-specific contributions to the RSSC accessory genome, which could have resulted from shared coevolutionary history.


Assuntos
Bacteriófagos , Ralstonia solanacearum , Bacteriófagos/genética , Humanos , Filogenia , Prófagos/genética , Ralstonia solanacearum/genética , Virulência/genética
18.
ISME J ; 16(10): 2433-2447, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35859161

RESUMO

Antibiotic degrading bacteria can reduce the efficacy of drug treatments by providing antibiotic exposure protection to pathogens. While this has been demonstrated at the ecological timescale, it is unclear how exposure protection might alter and be affected by pathogen antibiotic resistance evolution. Here, we utilised a two-species model cystic fibrosis (CF) community where we evolved the bacterial pathogen Pseudomonas aeruginosa in a range of imipenem concentrations in the absence or presence of Stenotrophomonas maltophilia, which can detoxify the environment by hydrolysing ß-lactam antibiotics. We found that P. aeruginosa quickly evolved resistance to imipenem via parallel loss of function mutations in the oprD porin gene. While the level of resistance did not differ between mono- and co-culture treatments, the presence of S. maltophilia increased the rate of imipenem resistance evolution in the four µg/ml imipenem concentration. Unexpectedly, imipenem resistance evolution coincided with the extinction of S. maltophilia due to increased production of pyocyanin, which was cytotoxic to S. maltophilia. Together, our results show that pathogen resistance evolution can disrupt antibiotic exposure protection due to competitive exclusion of the protective species. Such eco-evolutionary feedbacks may help explain changes in the relative abundance of bacterial species within CF communities despite intrinsic resistance to anti-pseudomonal drugs.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Antibacterianos/farmacologia , Fibrose Cística/microbiologia , Humanos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Porinas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Piocianina
19.
Evol Appl ; 15(5): 735-750, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35603031

RESUMO

Crop losses to plant pathogens are a growing threat to global food security and more effective control strategies are urgently required. Biofumigation, an agricultural technique where Brassica plant tissues are mulched into soils to release antimicrobial plant allelochemicals called isothiocyanates (ITCs), has been proposed as an environmentally friendly alternative to agrochemicals. Whilst biofumigation has been shown to suppress a range of plant pathogens, its effects on plant pathogenic bacteria remain largely unexplored. Here, we used a laboratory model system to compare the efficacy of different types of ITCs against Ralstonia solanacearum plant bacterial pathogen. Additionally, we evaluated the potential for ITC-tolerance evolution under high, intermediate, and low transfer frequency ITC exposure treatments. We found that allyl-ITC was the most efficient compound at suppressing R. solanacearum growth, and its efficacy was not improved when combined with other types of ITCs. Despite consistent pathogen growth suppression, ITC tolerance evolution was observed in the low transfer frequency exposure treatment, leading to cross-tolerance to ampicillin beta-lactam antibiotic. Mechanistically, tolerance was linked to insertion sequence movement at four positions in genes that were potentially associated with stress responses (H-NS histone like protein), cell growth and competitiveness (acyltransferase), iron storage ([2-Fe-2S]-binding protein) and calcium ion sequestration (calcium-binding protein). Interestingly, pathogen adaptation to the growth media also indirectly selected for increased ITC tolerance through potential adaptations linked with metabolism and antibiotic resistance (dehydrogenase-like protein) and transmembrane protein movement (Tat pathway signal protein). Together, our results suggest that R. solanacearum can rapidly evolve tolerance to allyl-ITC plant allelochemical which could constrain the long-term efficiency of biofumigation biocontrol and potentially shape pathogen evolution with plants.

20.
Curr Opin Microbiol ; 68: 102153, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35504054

RESUMO

Microbial communities are vital for plant health and productivity. While most studies have underlined the ecology of plant-microbe interactions, accumulating evidence suggests rapid microbial evolution is also important, often occurring at ecological timescales within and between plant generations. We review current evidence and mechanisms of rapid microbial evolution in the rhizosphere, focusing on examples along the mutualism-parasitism continuum. We consider how evolution can change the ecology and plant-microbe ecosystem functioning via eco-evolutionary dynamics and highlight the importance of intraspecies diversity as the product and raw material for natural selection. We conclude that acknowledging rapid evolution is not only crucial for understanding the complex plant-microbiota interplay but also an important prerequisite for harnessing the benefits of soil microbes for sustainable agriculture.


Assuntos
Microbiota , Rizosfera , Plantas , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA