Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717312

RESUMO

BACKGROUND: Goss's bacterial wilt and leaf blight (Goss's wilt), caused by the bacterium Clavibacter nebraskensis, is a corn disease that has been a top ten yield-reducing disease in North America in the past 15 years. Isoxadifen-ethyl is an herbicide safener that effectively increases cytochrome P450 activity in corn which enhances a plant's metabolism of herbicide molecules. Recent research found a potential link between isoxadifen-ethyl and increased Goss's wilt severity. RESULTS: The application of isoxadifen-ethyl increased (P = 0.014-0.046) area under disease progress curve (AUDPC) by 19%, 7%, and 9% at three environments, independent of accompanying herbicide or herbicide application timing. However, no significant differences in incidence of systemic wilt or corn grain yield occurred among treatments at any environment. CONCLUSION: These data provide evidence for an association between isoxadifen-ethyl safener and Goss's wilt in corn. The reason for this association is unknown, but the safener may affect plant or pathogen physiological mechanisms. While the increased disease severity did not result in decreased grain yield in these experiments, an increase in pathogen inoculum due to higher disease severity could influence Goss' wilt epidemics in future years. © 2024 Society of Chemical Industry.

2.
Plant Dis ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775674

RESUMO

Higher levels of ergot (Claviceps purpurea (Fr.)) Tul. were reported in North Dakota hard red spring wheat (HRSW) in 2018, leading to questions pertaining to management and cultivar resistance. To better understand pathogen and HRSW cultivar responses, greenhouse experiments were conducted from 2020 to 2021 to evaluate aggressiveness of nine C. purpurea isolates and ergot resistance in 21 HRSW cultivars. Results from the aggressiveness assay indicated significant cultivar by isolate interactions for total weight of sclerotia produced and ergot incidence. Mean data across all cultivar by isolate combinations suggested isolates CC-3 and IA-Tim were the most aggressive and subsequently used in ergot resistance experiments. Results from ergot resistance screening indicated none of the HRSW cultivars were immune to C. purpurea as all cultivars produced sclerotia. However, differences in ergot incidence, kernel incidence, aborted kernel incidence, total sclerotia weight, sclerotia length, and sclerotia width occurred among cultivars. Both 'ND-Frohberg' and 'TCG-Spitfire' had the lowest ergot incidence values and were among the lowest in total sclerotia weight. 'Waldron' and 'LCS-Trigger' had the highest ergot incidence and the highest total sclerotia weight. Given that most concerns with ergot occur post-harvest, we suggest two categories to describe ergot resistance: host resistance (fate of inoculation for a stigma) and logistical resistance (size characteristics of a sclerotium that influence its ability to remain with a seed lot after harvest and cleaning). This research provides a strong foundation on our understanding of HRSW resistance to ergot that will influence variety decisions in ergot-prone areas in North Dakota.

3.
Plant Dis ; : PDIS04230770RE, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38301222

RESUMO

Phoma black stem (PBS), caused by Phoma macdonaldii Boerema (teleomorph Leptosphaeria lindquistii Frezzi), is the most common stem disease of sunflower (Helianthus annuus L.) in the northern Great Plains region of the United States. However, the impact of PBS on sunflower yield in the United States is unclear, and a near complete absence of information on the impact of fungicides on disease management exists. The objectives of this study were to determine the impact of PBS on sunflower yield, the efficacy of available fungicides, the optimal fungicide application timing, and the economic viability of fungicides as a management tool. Fungicide timing efficacy was evaluated by applying single and/or sequential applications of pyraclostrobin fungicide at three sunflower growth stages in 10 field trials between 2017 and 2019. Efficacy of 10 fungicides from the Fungicide Resistance Action Committee (FRAC) groups 3, 7, and 11 were evaluated in four field trials between 2018 and 2019. The impact of treatments on PBS were evaluated by determination of incidence, severity, maximum lesion height, disease severity index (DSI), and harvested yield. Nine of the 10 fungicides evaluated and all fungicide timings that included an early bud application resulted in disease reductions when compared with the nontreated controls. The DSI was negatively correlated to sunflower yield in high-yield environments (P = 0.0004; R2 = 0.3425) but not in low- or moderate-yield environments. Although FRAC 7 fungicides were generally most efficacious, the sufficient efficacy and lower cost of FRAC 11 fungicides make them more economically viable in high-yielding environments at current market conditions.

5.
Plant Dis ; 107(12): 3817-3824, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37227435

RESUMO

Root-lesion nematode (RLN; Pratylenchus neglectus) is a migratory endoparasite and a major soilborne pathogen that affects wheat (Triticum spp.) production worldwide. Genetic resistance is one of the most economical and effective ways to manage P. neglectus in wheat. This study evaluated 37 local cultivars and germplasm lines in seven greenhouse experiments, including 26 hexaploid wheat, six durum wheat, two synthetic hexaploid wheat, one emmer wheat, and two triticale for P. neglectus resistance from 2016 to 2020. North Dakota field soils infested with two RLN populations (350 to 1,125 nematodes per kilogram of soil) were used for resistance screening under controlled greenhouse conditions. The final nematode population density for each cultivar and line was counted under the microscope to categorize the resistance ranking of these entries as resistant, moderately resistant, moderately susceptible, and susceptible. Out of the 37 cultivars and lines, one was classified as resistant (Brennan); 18 were moderately resistant (Divide, Carpio, Prosper, Advance, Alkabo, SY Soren, Barlow, Bolles, Select, Faller, Briggs, WB Mayville, SY Ingmar, W7984, PI 626573, Ben, Grandin, and Villax St. Jose); 11 were moderately susceptible; and seven were susceptible to P. neglectus. The resistant to moderately resistant lines identified in this study could be used in breeding programs after the resistance genes or loci are further elucidated. This research provides valuable information about P. neglectus resistance among wheat and triticale cultivars used in the Upper Midwest region of the United States.


Assuntos
Triticum , Tylenchoidea , Animais , Triticum/genética , Triticum/parasitologia , Locos de Características Quantitativas , North Dakota , Doenças das Plantas/parasitologia , Melhoramento Vegetal , Tylenchoidea/genética , Resistência à Doença/genética
6.
J Food Prot ; 86(3): 100046, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36916553

RESUMO

Claviceps purpurea (Fr.) Tul is the causal organism for ergot impacting grass hosts, including wheat. The pathogen produces ergot alkaloids (EAs) during the development of mature sclerotia leading to potential wheat quality discounts or rejection at the point of sale. Cultural practices are recommended for the management of ergot in wheat, but there is limited information pertaining to the use of in-season fungicides to help reduce ergot. The objective of this research was to evaluate the efficacy of four fungicides (prothioconazole + metconazole, pydiflumetofen + propiconazole, azoxystrobin + propiconazole, and fluxapyroxad + pyraclostrobin) on sclerotia characteristics, and EAs associated with C. purpurea. A field experiment was established using a male-sterile hard red spring line with fungicide applications occurring at complete full head emergence (Feekes Growth Stage 10.5). Individual plots were harvested and cleaned, and ergot sclerotia were collected. Physical characteristics and toxin production were examined. Fungicides had a significant (p < .05) impact on total ergot body weight (EBW), with all fungicides having lower EBW than the nontreated control. The fungicide premixture of pydiflumetofen + propiconazole had the lowest EBW among all treatments. Fluxapyroxad + pyraclostrobin had the lowest levels of EAs among fungicides. Results suggest that fungicide premixtures can potentially reduce EBW and influence EA production in wheat.


Assuntos
Claviceps , Alcaloides de Claviceps , Fungicidas Industriais , Triticum , Fungicidas Industriais/farmacologia , Alcaloides de Claviceps/farmacologia
7.
Phytopathology ; 113(11): 2103-2109, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36399026

RESUMO

Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa, has increased in both prevalence and severity in the major hard red spring wheat (HRSW)-producing state North Dakota. The disease is readily observed after flag leaf emergence and can quickly lead to defoliation and severe yield loss. The objectives of this research were to document the prevalence and incidence of BLS in North Dakota and provide estimations of yield and economic losses. Trained field scouts determined the incidence and prevalence of BLS in ND on HRSW plants between Feekes growth stage (FGS) 8 and FGS 11.2 from 2015 to 2021, and data were used to determine BLS-affected hectares. Yield data in combination with BLS ratings were obtained from HRSW performance trials to estimate the impact of BLS on yield. The combination of variety identity, hectarage data, BLS-affected hectarage estimates, and yield loss estimates was used to estimate economic losses from BLS in 2019 and 2020. Our data suggest that BLS-affected hectares ranged from 747 to 141,680 between 2015 and 2021. Yield loss was observed at multiple HRSW performance trial locations, with estimated yield losses as high as 60% on susceptible varieties. The amount of BLS-affected hectares was the highest in 2019 and 2020, and direct economic losses for North Dakota HRSW producers were estimated to be as high as $4.7 and $8.0 million, respectively. These data highlight the importance of BLS in HRSW and the need to procure resources for breeding efforts and grower education on management of BLS.


Assuntos
Doenças das Plantas , Triticum , North Dakota , Triticum/microbiologia , Doenças das Plantas/microbiologia , Melhoramento Vegetal
8.
Plant Dis ; 106(12): 3083-3090, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35612573

RESUMO

In the semiarid regions of North Dakota and Montana, low annual precipitation favors production of high-quality durum wheat (Triticum turgidum subsp. durum). However, conducive weather conditions for disease epidemics have occurred more frequently in recent years. Modification of planting date can reduce disease risk by decreasing the timeframe in which a susceptible crop overlaps with conducive disease conditions. The effect of planting date on fungal leaf spotting diseases (leaf spot), ergot, Fusarium head blight (FHB), and yield of durum was evaluated in 11 experiments across four sites in eastern Montana and western North Dakota. Six durum cultivars with differing levels of susceptibility to leaf spot and FHB were planted at three planting dates from 2017 to 2019. Early planting maximized yield and influenced ergot incidence. Although there was no effect of planting date, reduced susceptibility to leaf spot and FHB was associated with a reduction in leaf spotting disease severity and deoxynivalenol, respectively, in the harvested grain. Growers in the semiarid regions of these states should prioritize the selection of disease-resistant cultivars to help manage sporadic disease outbreaks and continue to plant early to maximize yield.


Assuntos
Fusarium , Triticum , Triticum/microbiologia , Doenças das Plantas/microbiologia , North Dakota , Montana
9.
Front Plant Sci ; 13: 834447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371139

RESUMO

Since the assessment of wheat diseases (e.g., leaf rust and tan spot) via visual observation is subjective and inefficient, this study focused on developing an automatic, objective, and efficient diagnosis approach. For each plant, color, and color-infrared (CIR) images were collected in a paired mode. An automatic approach based on the image processing technique was developed to crop the paired images to have the same region, after which a developed semiautomatic webtool was used to expedite the dataset creation. The webtool generated the dataset from either image and automatically built the corresponding dataset from the other image. Each image was manually categorized into one of the three groups: control (disease-free), disease light, and disease severity. After the image segmentation, handcrafted features (HFs) were extracted from each format of images, and disease diagnosis results demonstrated that the parallel feature fusion had higher accuracy over features from either type of image. Performance of deep features (DFs) extracted through different deep learning (DL) models (e.g., AlexNet, VGG16, ResNet101, GoogLeNet, and Xception) on wheat disease detection was compared, and those extracted by ResNet101 resulted in the highest accuracy, perhaps because deep layers extracted finer features. In addition, parallel deep feature fusion generated a higher accuracy over DFs from a single-source image. DFs outperformed HFs in wheat disease detection, and the DFs coupled with parallel feature fusion resulted in diagnosis accuracies of 75, 84, and 71% for leaf rust, tan spot, and leaf rust + tan spot, respectively. The methodology developed directly for greenhouse applications, to be used by plant pathologists, breeders, and other users, can be extended to field applications with future tests on field data and model fine-tuning.

10.
Plant Dis ; 105(6): 1765-1770, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33406859

RESUMO

Goss's bacterial wilt and leaf blight (Goss's wilt) of corn is the most important corn disease in North Dakota (ND), and yield loss due to the disease has not been reliably quantified in northern corn growing regions. To help quantify the amount of yield loss caused by Goss's wilt, a total of six field experiments were conducted from 2015 to 2017. Experiments were designed in a randomized complete block with a split plot arrangement. Hybrids served as main plots and Clavibacter nebraskensis inoculation timings as subplots. Three hybrids were used and classified as susceptible, moderately susceptible, and resistant. Inoculation timings included a noninoculated control, six to 10 leaf collars (V6 to V10), reproductive silk stage (R1), or a sequential combination of V6 to V10 and R1. A high level of disease (greater than 50% on susceptible hybrid) occurred in three experiments, a low level of disease (less than 5% on susceptible hybrid) in one experiment, and no disease was reported in two experiments. A combined analysis of the high disease experiments indicated yield losses of 34 to 41% on the susceptible hybrid when C. nebraskensis inoculation occurred at V6 to V10. Yield losses of 22 to 25% occurred on the moderately susceptible hybrid when C. nebraskensis inoculation occurred at V6 to V10, and statistical differences in yield loss were not found among inoculations timings on the resistant hybrid. Correlation analyses suggest that for every 1% increase in R1 disease severity on the susceptible hybrid, yield was reduced by 117 kg/ha (1.9 bu/acre). The current study further demonstrates the importance of hybrid resistance and provides updated yield loss information on Goss's wilt in a northern corn growing region.


Assuntos
Doenças das Plantas , Zea mays , Clavibacter , North Dakota
11.
Phytopathology ; 110(11): 1781-1790, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32567977

RESUMO

The ascomycete fungus Pyrenophora tritici-repentis is the causal agent of tan spot of wheat. The disease can occur on both common wheat (Triticum aestivum) and durum wheat (T. turgidum ssp. durum) and has potential to cause significant yield and quality losses. The fungal pathogen is known to produce necrotrophic effectors (NEs) that act as important virulence factors. Based on the NE production and virulence on a set of four differentials, P. tritici-repentis isolates have been classified into eight races. Race 4 produces no known NEs and is avirulent on the differentials. From a fungal collection in North Dakota, we identified several isolates that were classified as race 4. These isolates caused no or little disease on all common wheat lines including the differentials; however, they were virulent on some durum cultivars and tetraploid wheat accessions. Using two segregating tetraploid wheat populations and quantitative trait locus mapping, we identified several genomic regions significantly associated with disease caused by two of these isolates, some of which have not been previously reported. This is the first report that race 4 is virulent on tetraploid wheat, likely utilizing unidentified NEs. Our findings further highlight the insufficiency of the current race classification system for P. tritici-repentis.


Assuntos
Ascomicetos , Triticum , Ascomicetos/genética , Humanos , North Dakota , Doenças das Plantas , Tetraploidia , Triticum/genética
12.
Plant Dis ; 103(10): 2498-2504, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31453746

RESUMO

Downy mildew is a yield-limiting disease of sunflower, caused by the pathogen Plasmopara halstedii. Zoospore infection of root tissue shortly after planting results in systemic infection, causing postemergence damping off or severe stunting and head sterility. Although fungicide-applied seed treatments can be an effective management tool, the pathogen is resistant to phenylamide fungicides in many growing regions, and other available fungicides have limited efficacy. Oxathiapiprolin, the first member of the piperidinyl thiazole isoxazoline fungicides, was evaluated for efficacy on downy mildew in field trials conducted from 2011 to 2015 in North Dakota. Throughout the course of the study, the rate range was narrowed from active ingredient (a.i.) at 0.45 to 116.0 µg a.i. seed-1 to an optimal effective rate of 9.37 to 18.75 µg a.i. seed-1. Within that optimal range, the downy mildew incidence of sunflower planted with oxathiapiprolin-treated seed was significantly lower than the incidence in the nontreated sunflower in all 11 trials with disease pressure. Additionally, downy mildew incidence of sunflower planted with oxathiapiprolin-treated seed was significantly lower than sunflower planted with competitive commercially available fungicide-treated seed in 10 of those 11 trials. The use of oxathiapiprolin by sunflower growers is likely to reduce disease incidence and subsequent yield loss to downy mildew.


Assuntos
Helianthus , Hidrocarbonetos Fluorados , Oomicetos , Doenças das Plantas , Pirazóis , Antiparasitários/farmacologia , Helianthus/parasitologia , Hidrocarbonetos Fluorados/farmacologia , North Dakota , Oomicetos/efeitos dos fármacos , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Pirazóis/farmacologia , Sementes/química
13.
PLoS One ; 14(6): e0217510, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166965

RESUMO

BACKGROUND: Foliar fungicide applications to corn (Zea mays L.) occur at one or more application timings ranging from early vegetative growth stages to mid-reproductive stages. Previous studies indicated that fungicide applications are profitable under high disease pressure when applied during the tasseling to silking growth stages. Few comprehensive studies in corn have examined the impact of fungicide applications at an early vegetative growth stage (V6) compared to late application timings (VT) for yield response and return on fungicide investment (ROI) across multiple locations. OBJECTIVE: Compare yield response of fungicide application timing across multiple fungicide classes and calculate the probability of positive ROI. METHODS: Data were collected specifically for this analysis using a uniform protocol conducted in 13 states in the United States and one province in Canada from 2014-2015. Data were subjected to a primary mixed-model analysis of variance. Subsequent univariate meta-analyses, with and without moderator variables, were performed using standard meta-analytic procedures. Follow-up power and prediction analyses were performed to aid interpretation and development of management recommendations. RESULTS: Fungicide application resulted in a range of yield responses from -2,683.0 to 3,230.9 kg/ha relative to the non-treated control, with 68.2% of these responses being positive. Evidence suggests that all three moderator variables tested (application timing, fungicide class, and disease base level), had some effect (α = 0.05) on the absolute difference in yield between fungicide treated and non-treated plots ([Formula: see text]). Application timing influenced [Formula: see text], with V6 + VT and the VT application timings resulting in greater yield responses than the V6 application timing alone. Fungicide formulations that combined demethylation inhibitor and quinone outside inhibitor fungicides significantly increased yield response. CONCLUSION: Foliar fungicide applications can increase corn grain yield. To ensure the likelihood of a positive ROI, farmers should focus on applications at VT and use fungicides that include a mix of demethylation inhibitor and quinone outside inhibitor active ingredients.


Assuntos
Produção Agrícola , Fungicidas Industriais/farmacologia , Zea mays/crescimento & desenvolvimento , Ontário , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , Estados Unidos , Zea mays/microbiologia
14.
Plant Dis ; 99(10): 1333-1341, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30690997

RESUMO

Tan spot and Stagonospora nodorum blotch (SNB), often occurring together, are two economically significant diseases of wheat in the Northern Great Plains of the United States. They are caused by the fungi Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively, both of which produce multiple necrotrophic effectors (NE) to cause disease. In this work, 120 hard red winter wheat (HRWW) cultivars or elite lines, mostly from the United States, were evaluated in the greenhouse for their reactions to the two diseases as well as NE produced by the two pathogens. One P. nodorum isolate (Sn4) and four Pyrenophora tritici-repentis isolates (Pti2, 331-9, DW5, and AR CrossB10) were used separately in the disease evaluations. NE sensitivity evaluation included ToxA, Ptr ToxB, SnTox1, and SnTox3. The numbers of lines that were rated highly resistant to individual isolates ranged from 11 (9%) to 30 (25%) but only six lines (5%) were highly resistant to all isolates, indicating limited sources of resistance to both diseases in the U.S. adapted HRWW germplasm. Sensitivity to ToxA was identified in 83 (69%) of the lines and significantly correlated with disease caused by Sn4 and Pti2, whereas sensitivity to other NE was present at much lower frequency and had no significant association with disease. As expected, association mapping located ToxA and SnTox3 sensitivity to chromosome arm 5BL and 5BS, respectively. A total of 24 potential quantitative trait loci was identified with -log (P value) > 3.0 on 12 chromosomes, some of which are novel. This work provides valuable information and tools for HRWW production and breeding in the Northern Great Plains.

15.
Plant Dis ; 99(9): 1210-1215, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30695927

RESUMO

Sunflower rust is an important yield-limiting disease in sunflower production in the Great Plains of the United States. Rust severity and incidence have increased between 2002 and 2011, and genetic resistance is limited in most commercial hybrids, particularly the high-value confectionary market type. Although fungicides are available for rust management in the United States, management recommendations are insufficient. Specifically, efficacy and timing data are very limited for fungicides in FRAC groups 7 and 11. Seventeen fungicide efficacy and timing trials were conducted between 2008 and 2011 in North Dakota. Timings evaluated across the four years included single or multiple applications at growth stages (GS): GS V8-V12 (late vegetative), GS R1 (terminal bud formation), GS R3-4 (elongation of bud), GS R5 (flowering), and GS R6 (completion of flowering). With few exceptions, fungicide applications of DMIs and QoIs controlled disease greater than SDHI fungicides. Fungicide applications made at R5, either singly or in combination, consistently resulted in greater disease control. A negative correlation (r = -0.7756) between disease control and yield was observed, resulting in a yield reduction of 6.6% for every 1% increase in disease severity.

16.
Plant Dis ; 99(11): 1604-1609, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30695963

RESUMO

Puccinia helianthi, causal agent of sunflower rust, is a macrocyclic and autoecious pathogen. Widespread sexual reproduction of P. helianthi was documented in North Dakota and Nebraska for the first time in 2008 and has since frequently occurred. Concurrently, an increase in sunflower rust incidence, severity, and subsequent yield loss on sunflower has occurred since 2008. Rust can be managed with resistance genes but determination of virulence phenotypes is important for effective gene deployment and hybrid selection. However, the only P. helianthi virulence data available in the United States was generated prior to 2009 and consisted of aggregate virulence phenotypes determined on bulk field collections. The objective of this study was to determine the phenotypic diversity of P. helianthi in the United States. P. helianthi collections were made from cultivated, volunteer, and wild Helianthus spp. at 104 locations across seven U.S. states and one Canadian province in 2011 and 2012. Virulence phenotypes of 238 single-pustule isolates were determined on the internationally accepted differential set. In total, 29 races were identified, with races 300 and 304 occurring most frequently in 2011 and races 304 and 324 occurring most frequently in 2012. Differences in race prevalence occurred between survey years and across geography but were similar among host types. Four isolates virulent to all genes in the differential set (race 777) were identified. The resistance genes found in differential lines HA-R3 (R4b), MC29 (R2 and R10), and HA-R2 (R5) conferred resistance to 96.6, 83.6, and 78.6% of the isolates tested, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA