Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(3): e23459, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38329343

RESUMO

Wound healing is facilitated by neoangiogenesis, a complex process that is essential to tissue repair in response to injury. MicroRNAs are small, noncoding RNAs that can regulate the wound healing process including stimulation of impaired angiogenesis that is associated with type-2 diabetes (T2D). Expression of miR-409-3p was significantly increased in the nonhealing skin wounds of patients with T2D compared to the non-wounded normal skin, and in the skin of a murine model with T2D. In response to high glucose, neutralization of miR-409-3p markedly improved EC growth and migration in human umbilical vein endothelial cells (HUVECs), promoted wound closure and angiogenesis as measured by increased CD31 in human skin organoids, while overexpression attenuated EC angiogenic responses. Bulk mRNA-Seq transcriptomic profiling revealed BTG2 as a target of miR-409-3p, where overexpression of miR-409-3p significantly decreased BTG2 mRNA and protein expression. A 3' untranslated region (3'-UTR) luciferase assay of BTG2 revealed decreased luciferase activity with overexpression of miR-409-3p, while inhibition had opposite effects. Mechanistically, in response to high glucose, miR-409-3p deficiency in ECs resulted in increased mTOR phosphorylation, meanwhile BTG-anti-proliferation factor 2 (BTG2) silencing significantly decreased mTOR phosphorylation. Endothelial-specific and tamoxifen-inducible miR-409-3p knockout mice (MiR-409IndECKO ) with hyperglycemia that underwent dorsal skin wounding showed significant improvement of wound closure, increased blood flow, granulation tissue thickness (GTT), and CD31 that correlated with increased BTG2 expression. Taken together, our results show that miR-409-3p is a critical mediator of impaired angiogenesis in diabetic skin wound healing.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas Imediatamente Precoces , MicroRNAs , Proteínas Supressoras de Tumor , Animais , Humanos , Camundongos , Angiogênese , Proliferação de Células/fisiologia , Diabetes Mellitus Tipo 2/genética , Glucose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Imediatamente Precoces/genética , Luciferases , Camundongos Obesos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , Serina-Treonina Quinases TOR , Proteínas Supressoras de Tumor/genética , Cicatrização/genética
2.
Mol Ther Nucleic Acids ; 32: 995-1009, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332476

RESUMO

Angiogenesis is critical for tissue repair following myocardial infarction (MI), which is exacerbated under insulin resistance or diabetes. MicroRNAs are regulators of angiogenesis. We examined the metabolic regulation of miR-409-3p in post-infarct angiogenesis. miR-409-3p was increased in patients with acute coronary syndrome (ACS) and in a mouse model of acute MI. In endothelial cells (ECs), miR-409-3p was induced by palmitate, while vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) decreased its expression. Overexpression of miR-409-3p decreased EC proliferation and migration in the presence of palmitate, whereas inhibition had the opposite effects. RNA sequencing (RNA-seq) profiling in ECs identified DNAJ homolog subfamily B member 9 (DNAJB9) as a target of miR-409-3p. Overexpression of miR-409-3p decreased DNAJB9 mRNA and protein expression by 47% and 31% respectively, while enriching DNAJB9 mRNA by 1.9-fold after Argonaute2 microribonucleoprotein immunoprecipitation. These effects were mediated through p38 mitogen-activated protein kinase (MAPK). Ischemia-reperfusion (I/R) injury in EC-specific miR-409-3p knockout (KO) mice (miR-409ECKO) fed a high-fat, high-sucrose diet increased isolectin B4 (53.3%), CD31 (56%), and DNAJB9 (41.5%). The left ventricular ejection fraction (EF) was improved by 28%, and the infarct area was decreased by 33.8% in miR-409ECKO compared with control mice. These findings support an important role of miR-409-3p in the angiogenic EC response to myocardial ischemia.

3.
Genome Biol ; 22(1): 134, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947439

RESUMO

BACKGROUND: The evolution of multicellularity is a critical event that remains incompletely understood. We use the social amoeba, Dictyostelium discoideum, one of the rare organisms that readily transits back and forth between both unicellular and multicellular stages, to examine the role of epigenetics in regulating multicellularity. RESULTS: While transitioning to multicellular states, patterns of H3K4 methylation and H3K27 acetylation significantly change. By combining transcriptomics, epigenomics, chromatin accessibility, and orthologous gene analyses with other unicellular and multicellular organisms, we identify 52 conserved genes, which are specifically accessible and expressed during multicellular states. We validated that four of these genes, including the H3K27 deacetylase hdaD, are necessary and that an SMC-like gene, smcl1, is sufficient for multicellularity in Dictyostelium. CONCLUSIONS: These results highlight the importance of epigenetics in reorganizing chromatin architecture to facilitate multicellularity in Dictyostelium discoideum and raise exciting possibilities about the role of epigenetics in the evolution of multicellularity more broadly.


Assuntos
Dictyostelium/citologia , Dictyostelium/genética , Epigênese Genética , Acetilação , Animais , Caenorhabditis elegans/citologia , Cromatina/metabolismo , Perfilação da Expressão Gênica , Histonas/metabolismo , Metilação , Schizosaccharomyces/citologia , Fatores de Transcrição/metabolismo
4.
Sci Adv ; 6(17): eaaz4370, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32494643

RESUMO

During stress, global translation is reduced, but specific transcripts are actively translated. How stress-responsive mRNAs are selectively translated is unknown. We show that METL-5 methylates adenosine 1717 on 18S ribosomal RNA in C. elegans, enhancing selective ribosomal binding and translation of specific mRNAs. One of these mRNAs, CYP-29A3, oxidizes the omega-3 polyunsaturated fatty acid eicosapentaenoic acid to eicosanoids, key stress signaling molecules. While metl-5-deficient animals grow normally under homeostatic conditions, they are resistant to a variety of stresses. metl-5 mutant worms also show reduced bioactive lipid eicosanoids and dietary supplementation of eicosanoid products of CYP-29A3 restores stress sensitivity of metl-5 mutant worms. Thus, methylation of a specific residue of 18S rRNA by METL-5 selectively enhances translation of cyp-29A3 to increase production of eicosanoids, and blocking this pathway increases stress resistance. This study suggests that ribosome methylation can facilitate selective translation, providing another layer of regulation of the stress response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA