Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(12): 14050-14055, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33705088

RESUMO

The electrochemical CO2 reduction reaction (CO2RR) can convert widely available CO2 into value-added C2 products, such as ethylene and ethanol. However, low selectivity toward either compound limits the effectiveness of current CO2RR electrocatalysts. Here, we report the use of pulsed overpotentials to improve the ethylene selectivity to 67% with >75% overall C2 selectivity on (100)-textured polycrystalline Cu foil. The pulsed CO2RR can be made selective to either ethylene or ethanol by controlling the reaction temperature. We attribute the enhanced C2 selectivity to the improved CO dimerization kinetics on the active Cu surface on predominately (100)-textured Cu grains with the reduced hydrogen adsorption coverage during the pulsed CO2RR. The ethylene vs ethanol selectivity can be explained by the reducibility of the Cu(I) species during the cathodic potential cycle. Our work demonstrates a simple route to improve the ethylene vs ethanol selectivity and identifies Cu(I) as the species responsible for ethanol production.

2.
ACS Nano ; 14(12): 16897-16906, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33237717

RESUMO

Porous materials design often faces a trade-off between the requirements of high internal surface area and high reagent flux. Inorganic materials with asymmetric/hierarchical pore structures or well-defined mesopores have been tested to overcome this trade-off, but success has remained limited when the strategies are employed individually. Here, the attributes of both strategies are combined and a scalable path to porous titanium nitride (TiN) and carbon membranes that are conducting (TiN, carbon) or superconducting (TiN) is demonstrated. These materials exhibit a combination of asymmetric, hierarchical pore structures and well-defined mesoporosity throughout the material. Fast transport through such TiN materials as an electrochemical double-layer capacitor provides a substantial improvement in capacity retention at high scan rates, resulting in state-of-the-art power density (28.2 kW kg-1) at competitive energy density (7.3 W-h kg-1). In the case of carbon membranes, a record-setting power density (287.9 kW kg-1) at 14.5 W-h kg-1 is reported. Results suggest distinct advantages of such pore architectures for energy storage and conversion applications and provide an advanced avenue for addressing the trade-off between high-surface-area and high-flux requirements.

3.
J Am Chem Soc ; 141(27): 10595-10598, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251610

RESUMO

Electrides are ionic crystals in which the electrons prefer to occupy free space, serving as anions. Because the electrons prefer to be in the pockets, channels, or layers to the atomic orbitals around the nuclei, it has been challenging to find electrides with partially filled d-shell transition metals, since an unoccupied d-shell provides an energetically favorable location for the electrons to occupy. We recently predicted the existence of electrides with partially filled d-shells using high-throughput computational screening. Here, we provide experimental support using X-ray absorption spectroscopy and X-ray and neutron diffraction to show that Sr3CrN3 is indeed an electride despite its partial d-shell configuration. Our findings indicate that Sr3CrN3 is the first known electride with a partially filled d-shell transition metal, in agreement with theory, which significantly broadens the criteria for the search for new electride materials.

4.
ChemSusChem ; 11(11): 1781-1786, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29786966

RESUMO

We demonstrate a simple strategy to enhance the CO2 reduction reaction (CO2 RR) selectivity by applying a pulsed electrochemical potential to a polycrystalline copper electrode. By controlling the pulse duration, we show that the hydrogen evolution reaction (HER) is highly suppressed to a fraction of the original value (<5 % faradaic efficiency) and selectivity for the CO2 RR dramatically improves (>75 % CH4 and >50 % CO faradaic efficiency). We attribute the improved CO2 RR selectivity to a dynamically rearranging surface coverage of hydrogen and intermediate species during the pulsing. Our finding provides new insights into the interplay of transport and reaction processes as well as timescales of competing pathways to enable new opportunities to tune CO2 RR selectivity by adjusting the pulse profile. Additionally, the pulsed potential method we describe can be easily applied to other catalysts materials to improve their CO2 RR selectivity.

5.
Chem Commun (Camb) ; 53(53): 7250-7253, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28574554

RESUMO

The stability of carbon-based catalyst supports represents one of the biggest challenges for the commercialisation of proton-exchange membrane fuel cells (PEMFCs). Metal nitrides are an attractive alternative to carbon-based supports, owing to their high bulk conductivity and acid stability. We report the electrochemical stability evaluation of high-surface-area metal nitrides in acidic electrolytes. Three-dimensional mesoporous titanium (TiN) and niobium nitride (NbN) thin films were prepared using block copolymer self-assembly and were evaluated without using any conductive carbon additives or a carbon-based substrate. Both TiN and NbN are stable and maintain conductivity in acidic electrolytes up to at least 0.85 V (NbN) and 1.4 V (TiN) vs. reversible hydrogen electrode (RHE) after 2000 cycles. We also deposited platinum on the TiN films and demonstrate the expected cyclic voltammogram features, indicating the nitride's utility as a catalyst support.

6.
ACS Appl Mater Interfaces ; 7(45): 25053-60, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26535449

RESUMO

In this work, we demonstrate a general lithium-ion battery electrode fabrication method for colloidal nanoparticles (NPs) using electrophoretic deposition (EPD). Our process is capable of forming robust electrodes from copper sulfide, manganese sulfide, and germanium NPs without the use of additives such as polymeric binders and conductive agents. After EPD, we show two postprocessing treatments ((NH4)2S and inert atmosphere heating) to effectively remove surfactant ligands and create a linked network of particles. The NP films fabricated by this simple process exhibit excellent electrochemical performance as lithium-ion battery electrodes. Additive-free Cu(2-x)S and MnS NP films show well-defined plateaus at ∼1.7 V, demonstrating potential for use as cathode electrodes. Because of the absence of additives in the NP film, this additive-free NP film is an ideal template for ex situ analyses of the particles to track particle morphology changes and deterioration as a result of Li ion cycling. To this end, we perform a size-dependent investigation of Cu(2-x)S NPs and demonstrate that there is no significant relationship between size and capacity when comparing small (3.8 nm), medium (22 nm), and large (75 nm) diameter Cu(2-x)S NPs up to 50 cycles; however, the 75 nm NPs show higher Coulombic efficiency. Ex situ TEM analysis suggests that Cu(2-x)S NPs eventually break into smaller particles (<10 nm), explaining a weak correlation between size and performance. We also report for the first time on additive-free Ge NP films, which show stable capacities for up to 50 cycles at 750 mAh/g.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA