RESUMO
Reference data is key to produce reliable crop type and cropland maps. Although research projects, national and international programs as well as local initiatives constantly gather crop related reference data, finding, collecting, and harmonizing data from different sources is a challenging task. Furthermore, ethical, legal, and consent-related restrictions associated with data sharing represent a common dilemma faced by international research projects. We address these dilemmas by building a community-based, open, harmonised reference data repository at global extent, ready for model training or product validation. Our repository contains data from different sources such as the Group on Earth Observations Global Agricultural Monitoring Initiative (GEOGLAM) Joint Experiment for Crop Assessment and Monitoring (JECAM) sites, the Radiant MLHub, the Future Harvest (CGIAR) centers, the National Aeronautics and Space Administration Food Security and Agriculture Program (NASA Harvest), the International Institute for Applied Systems Analysis (IIASA) citizen science platforms (LACO-Wiki and Geo-Wiki), as well as from individual project contributions. Data of 2016 onwards were collected, harmonised, and annotated. The data sets spatial, temporal, and thematic quality were assessed applying rules developed in this research. Currently, the repository holds around 75 million harmonised observations with standardized metadata of which a large share is available to the public. The repository, funded by ESA through the WorldCereal project, can be used for either the calibration of image classification deep learning algorithms or the validation of Earth Observation generated products, such as global cropland extent and maize and wheat maps. We recommend continuing and institutionalizing this reference data initiative e.g. through GEOGLAM, and encouraging the community to publish land cover and crop type data following the open science and open data principles.
Assuntos
Agricultura , AlgoritmosRESUMO
Here we present a geographically diverse, temporally consistent, and nationally relevant land cover (LC) reference dataset collected by visual interpretation of very high spatial resolution imagery, in a national-scale crowdsourcing campaign (targeting seven generic LC classes) and a series of expert workshops (targeting seventeen detailed LC classes) in Indonesia. The interpreters were citizen scientists (crowd/non-experts) and local LC visual interpretation experts from different regions in the country. We provide the raw LC reference dataset, as well as a quality-filtered dataset, along with the quality assessment indicators. We envisage that the dataset will be relevant for: (1) the LC mapping community (researchers and practitioners), i.e., as reference data for training machine learning algorithms and map accuracy assessment (with appropriate quality-filters applied), and (2) the citizen science community, i.e., as a sizable empirical dataset to investigate the potential and limitations of contributions from the crowd/non-experts, demonstrated for LC mapping in Indonesia for the first time to our knowledge, within the context of complementing traditional data collection by expert interpreters.
RESUMO
Involving members of the public in image classification tasks that can be tricky to automate is increasingly recognized as a way to complete large amounts of these tasks and promote citizen involvement in science. While this labor is usually provided for free, it is still limited, making it important for researchers to use volunteer contributions as efficiently as possible. Using volunteer labor efficiently becomes complicated when individual tasks are assigned to multiple volunteers to increase confidence that the correct classification has been reached. In this paper, we develop a system to decide when enough information has been accumulated to confidently declare an image to be classified and remove it from circulation. We use a Bayesian approach to estimate the posterior distribution of the mean rating in a binary image classification task. Tasks are removed from circulation when user-defined certainty thresholds are reached. We demonstrate this process using a set of over 4.5 million unique classifications by 2783 volunteers of over 190,000 images assessed for the presence/absence of cropland. If the system outlined here had been implemented in the original data collection campaign, it would have eliminated the need for 59.4% of volunteer ratings. Had this effort been applied to new tasks, it would have allowed an estimated 2.46 times as many images to have been classified with the same amount of labor, demonstrating the power of this method to make more efficient use of limited volunteer contributions. To simplify implementation of this method by other investigators, we provide cutoff value combinations for one set of confidence levels.
Assuntos
Voluntários , Teorema de Bayes , Coleta de Dados , Geografia , HumanosRESUMO
It is well established that nighttime radiance, measured from satellites, correlates with economic prosperity across the globe. In developing countries, areas with low levels of detected radiance generally indicate limited development - with unlit areas typically being disregarded. Here we combine satellite nighttime lights and the world settlement footprint for the year 2015 to show that 19% of the total settlement footprint of the planet had no detectable artificial radiance associated with it. The majority of unlit settlement footprints are found in Africa (39%), rising to 65% if we consider only rural settlement areas, along with numerous countries in the Middle East and Asia. Significant areas of unlit settlements are also located in some developed countries. For 49 countries spread across Africa, Asia and the Americas we are able to predict and map the wealth class obtained from ~2,400,000 geo-located households based upon the percent of unlit settlements, with an overall accuracy of 87%.
Assuntos
Agricultura , Características da Família , África , América , Oriente Médio , Dinâmica PopulacionalRESUMO
During December 2020, a crowdsourcing campaign to understand what has been driving tropical forest loss during the past decade was undertaken. For 2 weeks, 58 participants from several countries reviewed almost 115 K unique locations in the tropics, identifying drivers of forest loss (derived from the Global Forest Watch map) between 2008 and 2019. Previous studies have produced global maps of drivers of forest loss, but the current campaign increased the resolution and the sample size across the tropics to provide a more accurate mapping of crucial factors leading to forest loss. The data were collected using the Geo-Wiki platform ( www.geo-wiki.org ) where the participants were asked to select the predominant and secondary forest loss drivers amongst a list of potential factors indicating evidence of visible human impact such as roads, trails, or buildings. The data described here are openly available and can be employed to produce updated maps of tropical drivers of forest loss, which in turn can be used to support policy makers in their decision-making and inform the public.
RESUMO
Several global high-resolution built-up surface products have emerged over the last five years, taking full advantage of open sources of satellite data such as Landsat and Sentinel. However, these data sets require validation that is independent of the producers of these products. To fill this gap, we designed a validation sample set of 50 K locations using a stratified sampling approach independent of any existing global built-up surface products. We launched a crowdsourcing campaign using Geo-Wiki ( https://www.geo-wiki.org/ ) to visually interpret this sample set for built-up surfaces using very high-resolution satellite images as a source of reference data for labelling the samples, with a minimum of five validations per sample location. Data were collected for 10 m sub-pixels in an 80 × 80 m grid to allow for geo-registration errors as well as the application of different validation modes including exact pixel matching to majority or percentage agreement. The data set presented in this paper is suitable for the validation and inter-comparison of multiple products of built-up areas.
RESUMO
To meet the ambitious objectives of biodiversity and climate conventions, the international community requires clarity on how these objectives can be operationalized spatially and how multiple targets can be pursued concurrently. To support goal setting and the implementation of international strategies and action plans, spatial guidance is needed to identify which land areas have the potential to generate the greatest synergies between conserving biodiversity and nature's contributions to people. Here we present results from a joint optimization that minimizes the number of threatened species, maximizes carbon retention and water quality regulation, and ranks terrestrial conservation priorities globally. We found that selecting the top-ranked 30% and 50% of terrestrial land area would conserve respectively 60.7% and 85.3% of the estimated total carbon stock and 66% and 89.8% of all clean water, in addition to meeting conservation targets for 57.9% and 79% of all species considered. Our data and prioritization further suggest that adequately conserving all species considered (vertebrates and plants) would require giving conservation attention to ~70% of the terrestrial land surface. If priority was given to biodiversity only, managing 30% of optimally located land area for conservation may be sufficient to meet conservation targets for 81.3% of the terrestrial plant and vertebrate species considered. Our results provide a global assessment of where land could be optimally managed for conservation. We discuss how such a spatial prioritization framework can support the implementation of the biodiversity and climate conventions.
Assuntos
Carbono , Conservação dos Recursos Naturais , Animais , Biodiversidade , Espécies em Perigo de Extinção , Humanos , VertebradosRESUMO
Since the collapse of the Soviet Union and transition to a new forest inventory system, Russia has reported almost no change in growing stock (+ 1.8%) and biomass (+ 0.6%). Yet remote sensing products indicate increased vegetation productivity, tree cover and above-ground biomass. Here, we challenge these statistics with a combination of recent National Forest Inventory and remote sensing data to provide an alternative estimate of the growing stock of Russian forests and to assess the relative changes in post-Soviet Russia. Our estimate for the year 2014 is 111 ± 1.3 × 109 m3, or 39% higher than the value in the State Forest Register. Using the last Soviet Union report as a reference, Russian forests have accumulated 1163 × 106 m3 yr-1 of growing stock between 1988-2014, which balances the net forest stock losses in tropical countries. Our estimate of the growing stock of managed forests is 94.2 × 109 m3, which corresponds to sequestration of 354 Tg C yr-1 in live biomass over 1988-2014, or 47% higher than reported in the National Greenhouse Gases Inventory.
RESUMO
In recent decades, global oil palm production has shown an abrupt increase, with almost 90% produced in Southeast Asia alone. To understand trends in oil palm plantation expansion and for landscape-level planning, accurate maps are needed. Although different oil palm maps have been produced using remote sensing in the past, here we use Sentinel 1 imagery to generate an oil palm plantation map for Indonesia, Malaysia and Thailand for the year 2017. In addition to location, the age of the oil palm plantation is critical for calculating yields. Here we have used a Landsat time series approach to determine the year in which the oil palm plantations are first detected, at which point they are 2 to 3 years of age. From this, the approximate age of the oil palm plantation in 2017 can be derived.
Assuntos
Agricultura/tendências , Arecaceae , Mapeamento Geográfico , Óleo de Palmeira , Indonésia , Malásia , TailândiaRESUMO
The continued increase of anthropogenic pressure on the Earth's ecosystems is degrading the natural environment and then decreasing the services it provides to humans. The type, quantity, and quality of many of those services are directly connected to land cover, yet competing demands for land continue to drive rapid land cover change, affecting ecosystem services. Accurate and updated land cover information is thus more important than ever, however, despite its importance, the needs of many users remain only partially attended. A key underlying reason for this is that user needs vary widely, since most current products - and there are many available - are produced for a specific type of end user, for example the climate modelling community. With this in mind we focus on the need for flexible, automated processing approaches that support on-demand, customized land cover products at various scales. Although land cover processing systems are gradually evolving in this direction there is much more to do and several important challenges must be addressed, including high quality reference data for training and validation and even better access to satellite data. Here, we 1) present a generic system architecture that we suggest land cover production systems evolve towards, 2) discuss the challenges involved, and 3) propose a step forward. Flexible systems that can generate on-demand products that match users' specific needs would fundamentally change the relationship between users and land cover products - requiring more government support to make these systems a reality.
RESUMO
Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether-and how-humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats-such as climate change-must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Política Ambiental/tendências , Atividades Humanas/tendências , Dieta , Dieta Vegetariana/tendências , Abastecimento de Alimentos , Humanos , Desenvolvimento Sustentável/tendênciasRESUMO
INTRODUCTION: Large translational research projects may contribute to further progress in cancer treatment by exploring molecular biology, immunologic approaches and identification of new prognostic and predictive factors. Therefore, the BRandOBio-project combines a clinical registry for collection of patient and tumor characteristics with a biobank comprising tumor and liquid biopsies. In addition, sociodemographic, environmental and lifestyle factors of included patients with primary newly diagnosed breast or ovarian cancer, other rare malignant ovarian tumors or gestational trophoblastic disease are prospectively collected. METHODS: The target population includes the German "Alb-Allgäu-Bodensee Region" which constitutes the outreach area of the University Hospital Ulm with affiliated academic centers and private practices. Clinical data combined with primary tumor tissue samples and longitudinal repeatedly collected blood samples [before, 6 (in high-risk situations), 12, 36 and 60 months after treatment and at relapse] will be acquired from more than 4000 patients within the next years. Standardized questionnaires are given to patients of the University Hospital Ulm and eight selected external sites for assessing life style and cancer risk factors. Concomitantly, storage of paraffin-embedded tumor samples as well as liquid biopsy samples will allow translational research projects, for example in terms of investigating circulating DNA and germ line DNA from cell pellets. RESULTS: Starting in January 2016 at the University Hospital Ulm, 19 additional external sites started recruiting patients in March 2017. As of September 15th 2019, 2151 patients with newly diagnosed cancers could be recruited (2044 breast cancer; 107 ovarian cancer). Nearly all patients provided biological samples (tumor and liquid biopsy) and about 80% returned the standardized questionnaire. After 1 year follow-up, blood samples were available from more than 80% of the participating patients. CONCLUSIONS: The BRandO BIO study is a large prospective cohort study with integrated comprehensive biobank and evaluation of sociodemographic and life style factors of gynecological cancer patients in a well-defined geographical area in the South West of Germany. Continuous high patient recruitment and stable rates over 80% for returned questionnaires as well as for repeated blood sampling show high acceptance of the BRandO study program and confirms feasibility of the project.
Assuntos
Bancos de Espécimes Biológicos/normas , Neoplasias da Mama/diagnóstico , Neoplasias Ovarianas/diagnóstico , Adulto , Estudos de Viabilidade , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Fatores de Risco , Pesquisa Translacional BiomédicaRESUMO
Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.
Assuntos
Biomassa , Florestas , Tecnologia de Sensoriamento Remoto , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodosRESUMO
As climate change continues, it is expected to have increasingly adverse impacts on child nutrition outcomes, and these impacts will be moderated by a variety of governmental, economic, infrastructural, and environmental factors. To date, attempts to map the vulnerability of food systems to climate change and drought have focused on mapping these factors but have not incorporated observations of historic climate shocks and nutrition outcomes. We significantly improve on these approaches by using over 580,000 observations of children from 53 countries to examine how precipitation extremes since 1990 have affected nutrition outcomes. We show that precipitation extremes and drought in particular are associated with worse child nutrition. We further show that the effects of drought on child undernutrition are mitigated or amplified by a variety of factors that affect both the adaptive capacity and sensitivity of local food systems with respect to shocks. Finally, we estimate a model drawing on historical observations of drought, geographic conditions, and nutrition outcomes to make a global map of where child stunting would be expected to increase under drought based on current conditions. As climate change makes drought more commonplace and more severe, these results will aid policymakers by highlighting which areas are most vulnerable as well as which factors contribute the most to creating resilient food systems.
Assuntos
Transtornos da Nutrição Infantil/epidemiologia , Mudança Climática , Secas , Transtornos do Crescimento/epidemiologia , Desnutrição/epidemiologia , Criança , Pré-Escolar , Feminino , Humanos , MasculinoRESUMO
There is an increasing evidence that smallholder farms contribute substantially to food production globally, yet spatially explicit data on agricultural field sizes are currently lacking. Automated field size delineation using remote sensing or the estimation of average farm size at subnational level using census data are two approaches that have been used. However, both have limitations, for example, automatic field size delineation using remote sensing has not yet been implemented at a global scale while the spatial resolution is very coarse when using census data. This paper demonstrates a unique approach to quantifying and mapping agricultural field size globally using crowdsourcing. A campaign was run in June 2017, where participants were asked to visually interpret very high resolution satellite imagery from Google Maps and Bing using the Geo-Wiki application. During the campaign, participants collected field size data for 130 K unique locations around the globe. Using this sample, we have produced the most accurate global field size map to date and estimated the percentage of different field sizes, ranging from very small to very large, in agricultural areas at global, continental, and national levels. The results show that smallholder farms occupy up to 40% of agricultural areas globally, which means that, potentially, there are many more smallholder farms in comparison with the two different current global estimates of 12% and 24%. The global field size map and the crowdsourced data set are openly available and can be used for integrated assessment modeling, comparative studies of agricultural dynamics across different contexts, for training and validation of remote sensing field size delineation, and potential contributions to the Sustainable Development Goal of Ending hunger, achieve food security and improved nutrition and promote sustainable agriculture.