Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Oleo Sci ; 67(8): 1043-1057, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012899

RESUMO

Lung surfactant, besides alveolar stability, also provides defence against pathogens by surfactant proteins (SP), SP-A and SP-D. The hydrophobic proteins SP-B and SP-C enhance surface activity. An unusual and paradoxical effect of bovine LS and synthetic model LS with SP-B/-C was bactericidal to Staphylococcus aureus and Escherichia coli. Bacterial proliferation were investigated with bovine lung surfactant extract (BLES), dipalmitoylphosphatdylcholine, palmitooleylglycerol, in combination with SP-B/-C using standard microbiological colony forming unit (CFU) counts and structural imaging. BLES and other surfactant-SP-B/-C mixtures inhibit bacterial growth in the concentration range of 0 -7.5 mg/mL, at > 10 mg/mL paradoxical growth of both the bacterial species suggest antibiotic resistance. The lipid only LS have no effect on bacterial proliferation. Smaller peptide mimics of SP-B or SP-B1-25, were less efficient than SP-Cff. Ultra structural studies of the bacterial CFU using electron and atomic force microscopy suggest some membrane damage of S. aereus at inhibitory concentration of BLES, and some structural alteration of E. coli at dividing zones, suggesting utilization and incorporation of surfactant lipid species by both bacteria. The results depicted from in vitro studies are also in agreement with protein-protein interactions obtained from PatchDock, FireDock and ClasPro algorithm. The MD-simulation decipher a small range fluctuation of gyration radius of the LS proteins and their peptide mimics. The studies have alarming implications in the use of high dosages (100 mg/mL/kg body weight) of exogenous surfactant for treatment of respiratory distress syndrome, genetic knock-out abnormalities associated with these proteins, and the novel roles played by SP-B/C as bactericidal agents.


Assuntos
Antibacterianos , Surfactantes Pulmonares/farmacologia , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Proteína A Associada a Surfactante Pulmonar/farmacologia , Proteína B Associada a Surfactante Pulmonar/farmacologia , Proteína C Associada a Surfactante Pulmonar/farmacologia , Proteína D Associada a Surfactante Pulmonar/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
2.
Biotechnol Bioeng ; 110(2): 374-82, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22949216

RESUMO

In this work, horseradish peroxidase (HRP) was immobilized on dimyristoylphosphatidylcholine (DMPC) bilayers supported on Au (111) by dithiotreitol (DTT) self-assembled monolayers and used as a nanostructured electrochemical biosensor to dopamine determination. The morphology of the phospholipid bilayers and the immobilization of HRP to these layers were characterized by atomic force microscopy (AFM). Square-wave voltammetry (SWV) experiments were done to investigate the performance of the HRP-modified electrode. The AFM images indicate that the enzyme is adsorbed at the external layer of the lipid bilayer and, although the electrical charges on the surface were not measured, the enzyme and phospholipids surface interaction occurs probably by electrostatic forces due to the pH used in the experiments. Interestingly, the present system can be used as one-shot sensor for the rapid detection of dopamine. The analytical performance of this system was linear for dopamine concentrations from 3.3 × 10⁻5 to 1.3 × 10⁻³ mol L⁻¹ (r = 0.9997) with a detection limit of 2.0 × 10⁻6 mol L⁻¹. Our results indicate that the use of HRP-DMPC bilayer system may be useful not only in developing new nanostructured materials for technological purposes, but could be very useful in fundamental studies to investigate the interactions between different micro-and macromolecules, even with soluble proteins, and lipid membranes.


Assuntos
Dopamina/análise , Enzimas Imobilizadas/química , Ouro/química , Peroxidase do Rábano Silvestre/química , Bicamadas Lipídicas/química , Reatores Biológicos , Biotecnologia/instrumentação , Dimiristoilfosfatidilcolina , Ditiotreitol , Enzimas Imobilizadas/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Microscopia de Força Atômica , Fosfolipídeos/química
3.
J Colloid Interface Sci ; 352(2): 456-64, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20850129

RESUMO

Functionality, structure and composition of the adsorbed films of bovine lipid extract surfactant (BLES), in the absence and presence of bovine serum albumin (BSA), at the air-buffer interface was characterized through surface tension, atomic force microscopy and time of flight secondary ion mass spectrometric methods. Gel and fluid domains of BLES films were found to be altered significantly in the presence of BSA. Differential scanning calorimetric studies on BLES dispersions in presence of BSA revealed that the perturbations of the lipid bilayer structures were significant only at higher amount of BSA. FTIR studies on the BLES dispersions in buffer solution revealed that BSA could affect the lipid head-group hydrations in bilayer as well as the methylene and methyl vibration modes of fatty acyl chains of the phospholipids present in BLES. Serum albumin could perturb the film structure at pathophysiological concentration while higher amount of BSA was required in perturbing the bilayer structures. The studies suggest a connected perturbed bilayer to monolayer transition model for surfactant inactivation at the alveolar-air interface in dysfunctional surfactants.


Assuntos
Bicamadas Lipídicas/química , Membranas Artificiais , Surfactantes Pulmonares/química , Albumina Sérica/química , Animais , Bovinos , Físico-Química , Tamanho da Partícula , Tensão Superficial
4.
Biophys Chem ; 134(1-2): 1-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18241975

RESUMO

The large aggregate (LA) fraction of goat pulmonary surfactant (GPS) was isolated and characterized. Goat lung surfactant extract (GLSE) was obtained by chloroform-methanol extraction of the saline suspended LA fraction. Total phospholipid (PL), cholesterol (CHOL), and protein were biochemically estimated. It was composed of approximately 83% (w/w) PL, approximately 0.6% (w/w) CHOL and approximately 16% (w/w) protein. CHOL content was found to be lower while the protein content was found to be higher than other mammalian pulmonary surfactants. Electrospray Ionization Mass Spectrometry (ESIMS) of GLSE confirmed dipalmitoylphosphatidylcholine (DPPC) as the major phospholipid species, with significant amounts of palmitoyl-oleoyl phosphatidylcholine (POPC), palmitoyl-myristoyl phosphatidylcholine (PMPC) and dioleoylphosphatidylcholine (DOPC). Functionality of the solvent spread GLSE film was carried out in a Langmuir surface balance by way of surface pressure (pi)-area (A) measurements. A high value of pi (approximately 65 mN m(-1)) could be attained with a lift-off area of approximately 1.2 nm(2) molecule(-1). A relatively large hysteresis was observed during compression-expansion cycles. Monolayer deposits at different pi, transferred onto freshly cleaved mica by Langmuir-Blodgett (LB) technique, were imaged by atomic force microscopy. DPPC-enriched domains (evident from height analyses) showed dimensions of 2.5 microm and underwent changes in shapes after 30 mN m(-1). Functionality and structure of the surfactant films were proposed to be controlled by the relative abundances of protein and cholesterol.


Assuntos
Cabras , Surfactantes Pulmonares/química , Silicatos de Alumínio/química , Animais , Colesterol/análise , Pulmão/metabolismo , Microscopia de Força Atômica , Fosfolipídeos/análise , Proteínas/análise , Surfactantes Pulmonares/isolamento & purificação , Propriedades de Superfície
5.
Langmuir ; 23(8): 4421-31, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17341098

RESUMO

Pulmonary surfactants stabilize the lung by way of reducing surface tension at the air-lung interface of the alveolus. 31P NMR, thin-layer chromatography, and electrospray ionization mass spectroscopy of bovine lipid extract surfactant (BLES) confirmed dipalmitoylphosphatidylcholine (DPPC) to be the major phospholipid species, with significant amounts of palmitoyl-oleoylphosphatidylcholine, palmitoyl-myristoylphosphatidylcholine, and palmitoyl-oleoylphosphatidylglycerol. BLES and DPPC spread at the air-water interface were studied through surface pressure area, fluorescence, and Brewster angle microscopy measurements. Langmuir-Blodgett films of monomolecular films, deposited on mica, were characterized by atomic force microscopy. BLES films displayed shape, size, and vertical height profiles distinct from those of DPPC alone. Calcium ions in the subphase altered BLES film domain structure. The addition of cholesterol (4 mol %) resulted in the destabilization of compressed BLES films at higher surface pressures (>40 mN m-1) and the formation of multilayered structures, apparently consisting of stacked monolayers. The studies suggested potential roles for individual surfactant lipid components in supramolecular arrangements, which could be the contributing factors in pulmonary surfactant to attain low surface tension at the air-water interface.


Assuntos
Biofísica/métodos , Géis/química , Pulmão/metabolismo , Fosfolipídeos/química , Surfactantes Pulmonares/química , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Bovinos , Cromatografia em Camada Fina , Lipídeos/química , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Espectrometria de Massas por Ionização por Electrospray/métodos , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA