Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(9): 112995, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37624698

RESUMO

Investigation of translation in rare cell types or subcellular contexts is challenging due to large input requirements for standard approaches. Here, we present "nanoRibo-seq" an optimized approach using 102- to 103-fold less input material than bulk approaches. nanoRibo-seq exhibits rigorous quality control features consistent with quantification of ribosome protected fragments with as few as 1,000 cells. We compare translatomes of two closely related cortical neuron subtypes, callosal projection neurons (CPN) and subcerebral projection neurons (SCPN), during their early postnatal development. We find that, while translational efficiency is highly correlated between CPN and SCPN, several dozen mRNAs are differentially translated. We further examine upstream open reading frame (uORF) translation and identify that mRNAs involved in synapse organization and axon development are highly enriched for uORF translation in both subtypes. nanoRibo-seq enables investigation of translational regulation of rare cell types in vivo and offers a flexible approach for globally quantifying translation from limited input material.


Assuntos
Axônios , Neurônios , Fases de Leitura Aberta/genética , Neurônios/metabolismo , Axônios/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Corpo Caloso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biossíntese de Proteínas
2.
Nat Commun ; 9(1): 5004, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30479398

RESUMO

The mammalian inactive X-chromosome (Xi) is structurally distinct from all other chromosomes and serves as a model for how the 3D genome is organized. The Xi shows weakened topologically associated domains and is instead organized into megadomains and superloops directed by the noncoding loci, Dxz4 and Firre. Their functional significance is presently unclear, though one study suggests that they permit Xi genes to escape silencing. Here, we find that megadomains do not precede Xist expression or Xi gene silencing. Deleting Dxz4 disrupts the sharp megadomain border, whereas deleting Firre weakens intra-megadomain interactions. However, deleting Dxz4 and/or Firre has no impact on Xi silencing and gene escape. Nor does it affect Xi nuclear localization, stability, or H3K27 methylation. Additionally, ectopic integration of Dxz4 and Xist is not sufficient to form megadomains on autosomes. We conclude that Dxz4 and megadomains are dispensable for Xi silencing and escape from X-inactivation.


Assuntos
Genes , Conformação de Ácido Nucleico , Inativação do Cromossomo X/genética , Alelos , Animais , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Feminino , Deleção de Genes , Inativação Gênica , Masculino , Camundongos , Fatores de Tempo
3.
Proc Natl Acad Sci U S A ; 114(40): 10654-10659, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923964

RESUMO

X chromosome inactivation is an epigenetic dosage compensation mechanism in female mammals driven by the long noncoding RNA, Xist. Although recent genomic and proteomic approaches have provided a more global view of Xist's function, how Xist RNA localizes to the inactive X chromosome (Xi) and spreads in cis remains unclear. Here, we report that the CDKN1-interacting zinc finger protein CIZ1 is critical for localization of Xist RNA to the Xi chromosome territory. Stochastic optical reconstruction microscopy (STORM) shows a tight association of CIZ1 with Xist RNA at the single-molecule level. CIZ1 interacts with a specific region within Xist exon 7-namely, the highly repetitive Repeat E motif. Using genetic analysis, we show that loss of CIZ1 or deletion of Repeat E in female cells phenocopies one another in causing Xist RNA to delocalize from the Xi and disperse into the nucleoplasm. Interestingly, this interaction is exquisitely sensitive to CIZ1 levels, as overexpression of CIZ1 likewise results in Xist delocalization. As a consequence, this delocalization is accompanied by a decrease in H3K27me3 on the Xi. Our data reveal that CIZ1 plays a major role in ensuring stable association of Xist RNA within the Xi territory.


Assuntos
Cromossomos de Mamíferos , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Nucleares , RNA Longo não Codificante , Sequências Repetitivas de Ácido Nucleico , Cromossomo X , Animais , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Motivos de Nucleotídeos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo
4.
Nat Struct Mol Biol ; 24(8): 620-631, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28692038

RESUMO

In mammals, homologous chromosomes rarely pair outside meiosis. One exception is the X chromosome, which transiently pairs during X-chromosome inactivation (XCI). How two chromosomes find each other in 3D space is not known. Here, we reveal a required interaction between the X-inactivation center (Xic) and the telomere in mouse embryonic stem (ES) cells. The subtelomeric, pseudoautosomal regions (PARs) of the two sex chromosomes (X and Y) also undergo pairing in both female and male cells. PARs transcribe a class of telomeric RNA, dubbed PAR-TERRA, which accounts for a vast majority of all TERRA transcripts. PAR-TERRA binds throughout the genome, including to the PAR and Xic. During X-chromosome pairing, PAR-TERRA anchors the Xic to the PAR, creating a 'tetrad' of pairwise homologous interactions (Xic-Xic, PAR-PAR, and Xic-PAR). Xic pairing occurs within the tetrad. Depleting PAR-TERRA abrogates pairing and blocks initiation of XCI, whereas autosomal PAR-TERRA induces ectopic pairing. We propose a 'constrained diffusion model' in which PAR-TERRA creates an interaction hub to guide Xic homology searching during XCI.


Assuntos
Pareamento Cromossômico , Proteínas de Ligação a DNA/metabolismo , Regiões Pseudoautossômicas/metabolismo , Cromossomos Sexuais/metabolismo , Fatores de Transcrição/metabolismo , Inativação do Cromossomo X , Animais , Camundongos , Transcrição Gênica
5.
Science ; 356(6343)2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28619887

RESUMO

Chen et al (Reports, 28 October 2016, p. 468) proposed that an interaction between Xist RNA and Lamin B receptor (LBR) is necessary and sufficient for Xist spreading during X-chromosome inactivation. We reanalyzed their data and found that reported genotypes of mutants are not supported by the sequencing data. These inconsistencies preclude assessment of the role of LBR in Xist spreading.


Assuntos
Inativação Gênica , Lâmina Nuclear , RNA Longo não Codificante/genética , RNA não Traduzido/genética , Cromossomo X , Inativação do Cromossomo X
6.
Science ; 349(6245)2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26089354

RESUMO

The inactive X chromosome (Xi) serves as a model to understand gene silencing on a global scale. Here, we perform "identification of direct RNA interacting proteins" (iDRiP) to isolate a comprehensive protein interactome for Xist, an RNA required for Xi silencing. We discover multiple classes of interactors-including cohesins, condensins, topoisomerases, RNA helicases, chromatin remodelers, and modifiers-that synergistically repress Xi transcription. Inhibiting two or three interactors destabilizes silencing. Although Xist attracts some interactors, it repels architectural factors. Xist evicts cohesins from the Xi and directs an Xi-specific chromosome conformation. Upon deleting Xist, the Xi acquires the cohesin-binding and chromosomal architecture of the active X. Our study unveils many layers of Xi repression and demonstrates a central role for RNA in the topological organization of mammalian chromosomes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , RNA Longo não Codificante/metabolismo , Inativação do Cromossomo X , Cromossomo X/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Células Cultivadas , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Inativação Gênica , Camundongos , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Proteômica , RNA Helicases/metabolismo , Cromossomo X/química , Cromossomo X/genética , Coesinas
7.
Trends Biochem Sci ; 39(1): 35-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24290031

RESUMO

Large-scale mapping of transcriptomes has revealed significant levels of transcriptional activity within both unannotated and annotated regions of the genome. Interestingly, many of the novel transcripts demonstrate tissue-specific expression and some level of sequence conservation across species, but most have low protein-coding potential. Here, we describe progress in identifying and characterizing long noncoding RNAs (lncRNAs) and review how these transcripts interact with other biological molecules to regulate diverse cellular processes. We also preview emerging techniques that will help advance the discovery and characterization of novel transcripts. Finally, we discuss the role of lncRNAs in disease and therapeutics.


Assuntos
RNA Longo não Codificante/fisiologia , Animais , Montagem e Desmontagem da Cromatina , Impressão Genômica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Interferência de RNA , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/genética , Transcrição Gênica
8.
J Mol Biol ; 425(19): 3698-706, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23816838

RESUMO

The recent revolution in sequencing technology has helped to reveal a large transcriptome of long non-coding RNAs (lncRNAs). A major challenge in the years to come is to determine what biological functions, if any, they serve. Although the purpose of these transcripts is largely unknown at present, existing examples suggest that lncRNAs play roles in a wide variety of biological processes. Exemplary cases are lncRNAs within the X-inactivation center. Indeed, lncRNAs dominate control of random X-chromosome inactivation (XCI). The RNA-based regulatory mechanisms of XCI include recruitment of chromatin modifiers, formation of RNA-based subnuclear compartments, and regulation of transcription by antisense transcription. XCI and lncRNAs now also appear to be very relevant in the development and progression of cancer. This perspective focuses on new insights into lncRNA-dependent regulation of XCI, which we believe serve as paradigms for understanding lncRNA function more generally.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , RNA Longo não Codificante/genética , Inativação do Cromossomo X/genética , Diferenciação Celular , DNA Antissenso/genética , Inativação Gênica , Humanos , Modelos Moleculares , Neoplasias/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , Transcriptoma , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA