Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 193: 208-217, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956784

RESUMO

Photodynamic therapy (PDT) for deep-seated tumors is still challenging due to the limited penetration of visible light through tissues. To resolve this limitation, systems based on bioluminescence resonance energy transfer (BRET), that do not require an external light source are proposed. Herein, for BRET-activated PDT we developed proteinaceous BRET-pair consisting of luciferase NanoLuc, which acts as energy donor upon addition of luciferase specific substrate furimazine, and phototoxic protein SOPP3 as a photosensitizer. We have shown that hybrid protein NanoLuc-SOPP3 is an excellent BRET pair with BRET ratio of 1.12. Targeted delivery of NanoLuc-SOPP3 BRET pair via tumor-specific small liposomes (∼100 nm) to tumors overexpressing the HER2-receptor (human epidermal growth factor receptor 2) was demonstrated in vitro and in vivo. The proposed BRET-activated system has been shown to significantly suppress tumor growth in a model of subcutaneous and, more importantly, deep-seated tumor model. Taking into account the in vivo efficiency of proposed BRET-activated system, we believe that it has great potential for depth-independent PDT and can significantly broaden the application of PDT in the clinic.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Lipossomos , Luciferases/genética , Luciferases/metabolismo , Transferência de Energia , Neoplasias/tratamento farmacológico
2.
J Photochem Photobiol B ; 249: 112803, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924677

RESUMO

Creating new tools for the early diagnosis and treatment of cancer is one of the most important and intensively developing areas of modern medicine. Currently, photodynamic cancer therapy (PDT) is attracting increasing attention as a unique modality of minimally invasive treatment and due to the absence of acquired resistance. However, PDT is associated with undesirable activities, such as non-specific photodynamic effects of sunlight on healthy tissues. Therefore, an important fundamental task is the development of improved PDT agents that selectively act on the affected areas. Here, we report the development of a hybrid protein-peptide system for the selective pH-dependent binding and subsequent photodynamic cancer cells ablation. It is known that a distinctive feature of cancer cells is a decreased pH level in the extracellular space. In this study we exploited a peptide fragment (pHLIP) as a targeting module, which spontaneously binds and embeds into the cell membrane when pH decreases below neutral. A mutant of miniSOG protein fused to pHLIP was used as a photosensitizing constituent. We demonstrate that this protein-peptide photosensitizing system selectively binds to HeLa cells at pH below 6.8 and kills them when exposed to light. These findings demonstrate the feasibility of using genetically encoded MiniSOG fusions with pHLIP for the targeted delivery of PSs to cancer cells and subsequent highly precise photodynamic therapy.


Assuntos
Dermatite Fototóxica , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Células HeLa , Linhagem Celular Tumoral , Dermatite Fototóxica/tratamento farmacológico , Peptídeos/farmacologia , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico
3.
Biochem Biophys Res Commun ; 641: 57-60, 2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36521286

RESUMO

It is generally accepted that the use of two different plasmids with the identical origins of replication in bacteria is not desirable due to their "incompatibility". The utilization of the same bacterial enzymatic apparatus for replication of different plasmids is thought to cause a significant redistribution in favor of one of them. In the present work, examining co-expression of two different fluorescent proteins in Escherichia coli, we have shown that the use of highly homologous plasmids with identical origins of replication and providing resistance to different antibiotics results in high representation of both plasmids in bacteria. Meanwhile, the level of gene expression and the amount of proteins produced may differ and is determined mostly by their sequence rather than by the "incompatibility" of the plasmids.


Assuntos
Replicação do DNA , Escherichia coli , Replicação do DNA/genética , Sequência de Bases , Escherichia coli/genética , Plasmídeos/genética , Proteínas/genética , Bactérias/genética , DNA Bacteriano/genética
4.
Molecules ; 27(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558192

RESUMO

Compounds sensitive to reactive oxygen species are widely used in the study of processes in living cells and in the development of therapeutic agents for photodynamic therapy. In the present work, we have synthesized a dyad in which the BODIPY dye is chemically bound to 9,10-diphenylanthracene (DPA). Here, DPA acts as a specific sensor of singlet oxygen and BODIPY as a reference dye. We studied the photophysical properties of the BODIPY-DPA dyad and showed that energy transfer occurs between the chromophores. As a result, the compound has excitation maxima in the absorption region of both DPA and BODIPY, but the fluorescence emission occurs mainly from BODIPY. In the presence of singlet oxygen, the excitation maximum of DPA decreases, while the intensity of the excitation maximum of BODIPY remains almost unchanged. This allows the BODIPY-DPA dyad to be used as a ratiometric sensor of singlet oxygen.


Assuntos
Fotoquimioterapia , Oxigênio Singlete , Oxigênio Singlete/química , Compostos de Boro/química , Transferência de Energia
5.
Biochem Biophys Res Commun ; 612: 141-146, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35525198

RESUMO

The targeted delivery of nanodrugs to malignant neoplasm is one of the most pressing challenges in the development of modern medicine. It was reported earlier that a bacteriorhodopsin-derived pH low insertion peptide (pHLIP) targets acidic tumors and has the ability to translocate low molecular weight cargoes across the cancer cell membrane. Here, to better understand the potential of pHLIP-related technologies, we used genetically engineered fluorescent protein (EGFP) as a model protein cargo and examined targeting efficiencies of EGFP-pHLIP hybrid constructs in vitro with the HeLa cell line at different pHs. By two independent monitoring methods we observed an increased binding affinity of EGFP-pHLIP fusions to HeLa cells at pH below 6.8. Confocal images of EGFP-pHLIP-treated cells showed bright fluorescence associated with the cell membrane and fluorescent dots localized inside the cell, that became brighter with time. To elucidate the pHLIP-mediated EGFP cell entry mechanisms, we performed a series of experiments with specific inhibitors of endocytosis. Our results imply that EGFP-pHLIP internalization is realized by endocytosis of various types.


Assuntos
Bacteriorodopsinas , Neoplasias , Membrana Celular/metabolismo , Fluorescência , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Neoplasias/metabolismo , Peptídeos/química
6.
J Photochem Photobiol B ; 206: 111853, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32272363

RESUMO

The precise positioning of catalytic amino acids against the substrate in an enzyme active site is a crucial factor in biocatalysis. Biosynthesis of the chromophores of fluorescent proteins (FPs) is an autocatalytic process that must conform to these requirements. Here, we show that, in addition to the internal amino acid residues in the proximity of the chromophore, chromophore biosynthesis is influenced by the remote amino acids exposed on the outer surface of the ß-barrel structure of the FP. It has been shown earlier that chromophore biosynthesis of the red FP from Zoanthus sp. (zoan2RFP) proceeds via an immature green state. At the same time, the green state is the final stage of chromophore biosynthesis of green FP (zoanGFP), which is highly homologous to zoan2RFP. It was also shown that a single N66D substitution in the chromophore-forming sequence of zoanGFP might trigger the synthesis of the red chromophore. However, in this case, the synthesis of the red chromophore is incomplete and occurs only at elevated temperatures. Here, we tried to uncover additional structural determinants that govern the biosynthesis of the red chromophore. A comparison of zoanGFP and zoan2RFP revealed intrabarrel amino acid differences at five positions. Exhaustive substitutions of these five positions in zoanGFP-N66D gave rise to zoanGFPmut with the same intrabarrel amino acid composition as zoan2RFP. zoanGFPmut showed only partial green-to-red chromophore transformation at elevated temperatures. To elucidate the extra factors that can affect red chromophore biosynthesis, we performed comparative molecular dynamics simulations of zoan2RFP and zoanGFPmut. The simulations revealed several external amino acids that might influence the arrangement and flexibility of the chromophore-surrounding amino acid residues in these proteins. Mutagenesis experiments confirmed the crucial role of these residues in red chromophore biosynthesis. The obtained zoanGFPmut2 exhibited complete green-to-red transformation, suggesting that the mutated amino acids exposed on the surface of the ß-barrel contribute to red chromophore biosynthesis.


Assuntos
Aminoácidos/química , Proteínas Luminescentes/síntese química , Mutagênese , Cromatografia de Afinidade , Cor , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Simulação de Dinâmica Molecular , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA