Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Neuropathol Appl Neurobiol ; 48(3): e12791, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35067965

RESUMO

AIMS: Our understanding of the pathological interactions between amyloidosis and tauopathy in Alzheimer's disease is incomplete. We sought to determine if the relative timing of the amyloidosis and tauopathy is critical for amyloid-enhanced tauopathy. METHODS: We crossed an inducible tauopathy model with two ß-amyloid models utilising the doxycycline-repressible transgenic system to modulate timing and duration of human tau expression in the context of amyloidosis and then assessed tauopathy, amyloidosis and gliosis. RESULTS: We combined inducible rTg4510 tau with APPswe/PS1dE9 [Line 85 (L85)] mice to examine the interactions between Aß and tauopathy at different stages of amyloidosis. When we initially suppressed mutant human tau expression for 14-15 months and subsequently induced tau expression for 6 months, severe amyloidosis with robust tauopathy resulted in rTg4510/L85 but not rTg4510 mice. When we suppressed mutant tau for 7 months before inducing expression for a subsequent 6 months in another cohort of rTg4510/L85 and rTg4510 mice, only rTg4510/L85 mice displayed robust tauopathy. Lastly, we crossed rTg4510 mice to tet-regulated APPswe/ind [Line 107 (L107)] mice, using doxycycline to initially suppress both transgenes for 1 month before inducing expression for 5 months to model early amyloidosis. In contrast to rTg4510, rTg4510/L107 mice rapidly developed amyloidosis, accompanied by robust tauopathy. CONCLUSIONS: These data suggest that tau misfolding is exacerbated by both newly forming Aß deposits in younger brain and mature deposits in older brains. Refined use and repurposing of these models provide new tools to explore the intersection of ageing, amyloid and tauopathy and to test interventions to disrupt the amyloid cascade.


Assuntos
Doença de Alzheimer , Tauopatias , Idoso , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Mol Neurodegener ; 16(1): 63, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503546

RESUMO

BACKGROUND: The misfolding of host-encoded proteins into pathological prion conformations is a defining characteristic of many neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and Lewy body dementia. A current area of intense study is the way in which the pathological deposition of these proteins might influence each other, as various combinations of co-pathology between prion-capable proteins are associated with exacerbation of disease. A spectrum of pathological, genetic and biochemical evidence provides credence to the notion that amyloid ß (Aß) accumulation can induce and promote α-synuclein pathology, driving neurodegeneration. METHODS: To assess the interplay between α-synuclein and Aß on protein aggregation kinetics, we crossed mice expressing human α-synuclein (M20) with APPswe/PS1dE9 transgenic mice (L85) to generate M20/L85 mice. We then injected α-synuclein preformed fibrils (PFFs) unilaterally into the hippocampus of 6-month-old mice, harvesting 2 or 4 months later. RESULTS: Immunohistochemical analysis of M20/L85 mice revealed that pre-existing Aß plaques exacerbate the spread and deposition of induced α-synuclein pathology. This process was associated with increased neuroinflammation. Unexpectedly, the injection of α-synuclein PFFs in L85 mice enhanced the deposition of Aß; whereas the level of Aß deposition in M20/L85 bigenic mice, injected with α-synuclein PFFs, did not differ from that of mice injected with PBS. CONCLUSIONS: These studies reveal novel and unexpected interplays between α-synuclein pathology, Aß and neuroinflammation in mice that recapitulate the pathology of Alzheimer's disease and Lewy body dementia.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Demência/metabolismo , Modelos Animais de Doenças , Agregação Patológica de Proteínas , alfa-Sinucleína/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Cruzamentos Genéticos , Demência/patologia , Gliose/metabolismo , Gliose/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Injeções , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neuroinflamatórias , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Príons/química , Agregados Proteicos , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/toxicidade
4.
Acta Neuropathol Commun ; 8(1): 43, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252825

RESUMO

A hallmark pathology of Alzheimer's disease (AD) is the formation of amyloid ß (Aß) deposits that exhibit diverse localization and morphologies, ranging from diffuse to cored-neuritic deposits in brain parenchyma, with cerebral vascular deposition in leptomeningeal and parenchymal compartments. Most AD brains exhibit the full spectrum of pathologic Aß morphologies. In the course of studies to model AD amyloidosis, we have generated multiple transgenic mouse models that vary in the nature of the transgene constructs that are expressed; including the species origin of Aß peptides, the levels and length of Aß that is deposited, and whether mutant presenilin 1 (PS1) is co-expressed. These models recapitulate features of human AD amyloidosis, but interestingly some models can produce pathology in which one type of Aß morphology dominates. In prior studies of mice that primarily develop cored-neuritic deposits, we determined that Aß deposition is associated with changes in cytosolic protein solubility in which a subset of proteins become detergent-insoluble, indicative of secondary proteome instability. Here, we survey changes in cytosolic protein solubility across seven different transgenic mouse models that exhibit a range of Aß deposit morphologies. We find a surprisingly diverse range of changes in proteome solubility across these models. Mice that deposit human Aß40 and Aß42 in cored-neuritic plaques had the most robust changes in proteome solubility. Insoluble cytosolic proteins were also detected in the brains of mice that develop diffuse Aß42 deposits but to a lesser extent. Notably, mice with cored deposits containing only Aß42 had relatively few proteins that became detergent-insoluble. Our data provide new insight into the diversity of biological effects that can be attributed to different types of Aß pathology and support the view that fibrillar cored-neuritic plaque pathology is the more disruptive Aß pathology in the Alzheimer's cascade.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidose/genética , Amiloidose/patologia , Animais , Encéfalo/patologia , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Humanos , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Placa Amiloide/genética , Placa Amiloide/patologia , Presenilina-1/genética , Proteoma , Solubilidade
5.
Acta Neuropathol ; 131(1): 103-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26650262

RESUMO

A hallmark feature of amyotrophic lateral sclerosis (ALS) is that symptoms appear to spread along neuroanatomical pathways to engulf the motor nervous system, suggesting a propagative toxic entity could be involved in disease pathogenesis. Evidence for such a propagative entity emerged recently in studies using mice that express G85R-SOD1 mutant protein fused to YFP (G85R-SOD1:YFP). Heterozygous G85R-SOD1:YFP transgenic mice do not develop ALS symptoms out to 20 months of age. However, when newborns are injected with spinal homogenates from paralyzed mutant SOD1 mice, the G85R-SOD1:YFP mice develop paralysis as early as 6 months of age. We now demonstrate that injecting spinal homogenates from paralyzed mutant SOD1 mice into the sciatic nerves of adult G85R-SOD1:YFP mice produces a spreading motor neuron disease within 3.0 ± 0.2 months of injection. The formation of G85R-SOD1:YFP inclusion pathology spreads slowly in this model system; first appearing in the ipsilateral DRG, then lumbar spinal cord, before spreading rostrally up to the cervical cord by the time mice develop paralysis. Reactive astrogliosis mirrors the spread of inclusion pathology and motor neuron loss is most severe in lumbar cord. G85R-SOD1:YFP inclusion pathology quickly spreads to discrete neurons in the brainstem and midbrain that are synaptically connected to spinal neurons, suggesting a trans-synaptic propagation of misfolded protein. Taken together, the data presented here describe the first animal model that recapitulates the spreading phenotype observed in patients with ALS, and implicates the propagation of misfolded protein as a potential mechanism for the spreading of motor neuron disease.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/patologia , Dobramento de Proteína , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Príons/genética , Medula Espinal/patologia , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase-1
6.
Acta Neuropathol Commun ; 3: 72, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26566997

RESUMO

INTRODUCTION: Transgenic overexpression of amyloid precursor protein (APP) genes that are either entirely human in sequence or have humanized Aß sequences can produce Alzheimer-type amyloidosis in mice, provided the transgenes also encode mutations linked to familial Alzheimer's Disease (FAD). Although transgenic mice have been produced that overexpress wild-type mouse APP, no mice have been generated that express mouse APP with FAD mutations. Here we describe two different versions of such mice that produce amyloid deposits consisting of entirely of mouse Aß peptides. One line of mice co-expresses mouse APP-Swedish (moAPPswe) with a human presenilin exon-9 deleted variant (PS1dE9) and another line expresses mouse APP-Swedish/Indiana (APPsi) using tetracycline-regulated vectors (tet.moAPPsi). RESULTS: Both lines of mice that produce mouse Aß develop amyloid deposits, with the moAPPswe/PS1dE9 mice developing extracellular compact, cored, neuritic deposits that primarily localize to white matter tracts and meningial layers, whereas the tet.moAPPsi mice developed extracellular diffuse cortical/hippocampal deposits distributed throughout the parenchyma. CONCLUSIONS: These findings demonstrate that murine Aß peptides have the capacity to produce amyloid deposits that are morphologically similar to deposits found in human AD provided the murine APP gene harbors mutations linked to human FAD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Regulação da Expressão Gênica/genética , Placa Amiloide/metabolismo , Presenilina-1/genética , Fatores Etários , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neuroblastoma/patologia , Presenilina-1/metabolismo
7.
J Huntingtons Dis ; 3(1): 73-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25062766

RESUMO

BACKGROUND: N-terminal cleavage products of mutant huntingtin (htt) generate pathologic neuronal inclusion bodies. The precise length of the htt fragment, termed Cp-A/1, that produces HD pathologic inclusions is unknown. OBJECTIVE: We sought to elucidate the protein sequence elements within the N-terminus of htt that mediate its proteolysis based on a model in which engineered htt fragments terminating at residue 171 are cleaved to produce Cp-A/1 fragments. METHODS: We expressed htt N171 cDNAs harboring a series of experimental mutations in the presumptive cleavage site that generates Cp-A/1 in cells to identify cleavage resistant mutants of htt N171. One of these constructs was expressed in mice, followed by analysis using immunoblots of brain extracts and immunohistochemistry of transgenic mouse brain tissues. RESULTS: Using the HEK293 cell model, mutagenesis studies mapped the cleavage site in htt N171 to sequences between residues 105-114. Mutation of 8 positively charged residues (H, K, R) located between residues 88 and 114 to alanine to neutralize the charge also blocked the generation of Cp-A/1 like fragments. Transgenic mice expressing this latter construct, termed N171-82Q-N8, developed phenotypes similar to previously characterized N171-82Q transgenic mice, including rotarod deficiency, intranuclear inclusions, and premature death. Surprisingly, the N171-82Q-N8 protein was efficiently cleaved in vivo to produce Cp-A/1 fragments that accumulated as insoluble inclusions. CONCLUSION: Mutagenesis of htt to identify critical amino acids that direct its cleavage predicted a role for charged residues in the sequence flanking the presumptive cleavage site. However, the role for these residues could not be confirmed in vivo. The basis for the discrepancy between predicted outcomes in HEK293 cells and the mouse models remain unresolved, but the data provide another validation of the hypothesis that Cp-A/1 fragments of mutant htt can induce HD-like phenotypes.


Assuntos
Doença de Huntington/metabolismo , Corpos de Inclusão/metabolismo , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Proteína Huntingtina , Camundongos , Camundongos Transgênicos , Mutagênese , Fenótipo
8.
Alzheimers Res Ther ; 4(2): 12, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22537779

RESUMO

INTRODUCTION: The low-density lipoprotein receptor-related protein (LRP1) and its family members have been implicated in the pathogenesis of Alzheimer's disease. Multiple susceptibility factors converge to metabolic pathways that involve LRP1, including modulation of the processing of amyloid precursor protein (APP) and the clearance of Aß peptide. METHODS: We used the Cre-lox system to lower LRP1 levels in hippocampal neurons of mice that develop Alzheimer-type amyloid by crosses between mice that express Cre recombinase under the transcriptional control of the GFAP promoter, mice that harbor loxp sites in the LRP1 gene, and the APPswe/PS1dE9 transgenic model. We compared amyloid plaque numbers in APPswe/PS1dE9 mice lacking LRP1 expression in hippocampus (n = 13) to mice with normal levels of LRP1 (n = 12). Student t-test was used to test whether there were significant differences in plaque numbers and amyloid levels between the groups. A regression model was used to fit two regression lines for these groups, and to compare the rates of Aß accumulation. RESULTS: Immunohistochemical analyses demonstrated efficient elimination of LRP1 expression in the CA fields and dentate gyrus of the hippocampus. Within hippocampus, we observed no effect on the severity of amyloid deposition, the rate of Aß40/42 accumulation, or the architecture of amyloid plaques when LRP1 levels were reduced. CONCLUSIONS: Expression of LRP1 by neurons in proximity to senile amyloid plaques does not appear to play a major role in modulating the formation of these proximal deposits or in the appearance of the associated neuritic pathology.

9.
Hum Mol Genet ; 20(14): 2770-82, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21515588

RESUMO

Recent studies have implicated an N-terminal caspase-6 cleavage product of mutant huntingtin (htt) as an important mediator of toxicity in Huntington's disease (HD). To directly assess the consequences of such fragments on neurologic function, we produced transgenic mice that express a caspase-6 length N-terminal fragment of mutant htt (N586) with both normal (23Q) and disease (82Q) length glutamine repeats. In contrast to mice expressing N586-23Q, mice expressing N586-82Q accumulate large cytoplasmic inclusion bodies that can be visualized with antibodies to epitopes throughout the N586 protein. However, biochemical analyses of aggregated mutant huntingtin in these mice demonstrated that the inclusion bodies are composed largely of a much smaller htt fragment (terminating before residue 115), with lesser amounts of full-length N586-82Q fragments. Mice expressing the N586-82Q fragment show symptoms typical of previously generated mice expressing mutant huntingtin fragments, including failure to maintain weight, small brain weight and reductions in specific mRNAs in the striatum. Uniquely, these N586-82Q mice develop a progressive movement disorder that includes dramatic deficits in motor performance on the rotarod and ataxia. Our findings suggest that caspase-6-derived fragments of mutant htt are capable of inducing novel HD-related phenotypes, but these fragments are not terminal cleavage products as they are subject to further proteolysis. In this scenario, mutant htt fragments derived from caspase 6, or possibly other proteases, could mediate HD pathogenesis via a 'hit and run' type of mechanism in which caspase-6, or other larger N-terminal fragments, mediate a neurotoxic process before being cleaved to a smaller fragment that accumulates pathologically.


Assuntos
Corpo Estriado/metabolismo , Expressão Gênica , Doença de Huntington/metabolismo , Corpos de Inclusão/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/biossíntese , Proteínas Nucleares/biossíntese , Substituição de Aminoácidos , Animais , Ataxia/genética , Ataxia/metabolismo , Ataxia/patologia , Caspase 6 , Corpo Estriado/patologia , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/patologia , Corpos de Inclusão/patologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Teste de Desempenho do Rota-Rod
10.
Proteins ; 61(1): 176-83, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16080148

RESUMO

Multiple phases have been observed during the folding and unfolding of intestinal fatty acid binding protein (WT-IFABP) by stopped-flow fluorescence. Site-directed mutagenesis has been used to examine the role of each of the two tryptophans of this protein in these processes. The unfolding and refolding kinetics of the mutant protein containing only tryptophan 82 (W6Y-IFABP) showed that the tryptophan at this location was critical to the fluorescence signal changes observed throughout the unfolding reaction and early in the refolding reaction. However, the kinetic patterns of the mutant protein containing only tryptophan 6 (W82Y-IFABP) indicated that the tryptophan at this location participated in the fluorescence signal changes observed early in the unfolding reaction and late in the refolding reaction. Together, these data suggest that native-like structure was formed first in the vicinity of tryptophan 82, near the center of the hydrophobic core of this beta-sheet protein, prior to formation of native-like structure in the periphery of the protein.


Assuntos
Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/metabolismo , Dobramento de Proteína , Triptofano/metabolismo , Dicroísmo Circular , Proteínas de Ligação a Ácido Graxo/genética , Cinética , Modelos Moleculares , Mutação/genética , Desnaturação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Termodinâmica , Triptofano/genética , Ureia/farmacologia
11.
Exp Neurol ; 195(1): 208-17, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15953602

RESUMO

Complementary interacting molecules on myelin and axons are required for long-term axon-myelin stability. Their disruption results in axon degeneration, contributing to the pathogenesis of demyelinating diseases. Myelin-associated glycoprotein (MAG), a minor constituent of central and peripheral nervous system myelin, is a member of the Siglec family of sialic acid-binding lectins and binds to gangliosides GD1a and GT1b, prominent molecules on the axon surface. Mice lacking the ganglioside biosynthetic gene Galgt1 fail to express complex gangliosides, including GD1a and GT1b. In the current studies, CNS and PNS histopathology and behavior of Mag-null, Galgt1-null, and double-null mice were compared on the same mouse strain background. When back-crossed to >99% C57BL/6 strain purity, Mag-null mice demonstrated marked CNS, as well as PNS, axon degeneration, in contrast to prior findings using mice of mixed strain background. On the same background, Mag- and Galgt1-null mice exhibited quantitatively and qualitatively similar CNS and PNS axon degeneration and nearly identical decreases in axon diameter and neurofilament spacing. Double-null mice had qualitatively similar changes. Consistent with these findings, Mag- and Galgt1-null mice had similar motor behavioral deficits, with double-null mice only modestly more impaired. Despite their motor deficits, Mag- and Galgt1-null mice demonstrated hyperactivity, with spontaneous locomotor activity significantly above that of wild type mice. These data demonstrate that MAG and complex gangliosides contribute to axon stability in both the CNS and PNS. Similar neuropathological and behavioral deficits in Galgt1-, Mag-, and double-null mice support the hypothesis that MAG binding to gangliosides contributes to long-term axon-myelin stability.


Assuntos
Axônios/fisiologia , Sistema Nervoso Central , Gangliosídeos/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Sistema Nervoso Periférico , Animais , Axônios/patologia , Axônios/ultraestrutura , Comportamento Animal , Química Encefálica , Gangliosídeos/deficiência , Genótipo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão/métodos , Atividade Motora/genética , Glicoproteína Associada a Mielina/deficiência , N-Acetilgalactosaminiltransferases/deficiência , N-Acetilgalactosaminiltransferases/metabolismo , Degeneração Neural/genética , Reflexo/genética , Medula Espinal/patologia , Medula Espinal/ultraestrutura , Tremor/genética , Tremor/fisiopatologia , Polipeptídeo N-Acetilgalactosaminiltransferase
12.
Biochim Biophys Acta ; 1686(3): 200-8, 2005 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-15629689

RESUMO

Sphingolipids, glycosylphosphatidylinositol (GPI)-anchored proteins, and certain signaling molecules segregate from bulk membrane lipids into lateral domains termed lipid rafts, which are often isolated based on their insolubility in cold nonionic detergents. During immunohistological studies of gangliosides, major sphingolipids of the brain, we found that cold Triton X-100 solubility is bidirectional, leading to histological redistribution from gray to white matter. When brain sections were treated with > or =0.25% Triton X-100 at 4 degrees C, ganglioside GD1a, which is normally enriched in gray matter and depleted in white matter, redistributed into white matter tracts. Incubation of brain sections from knockout mice lacking GD1a with wild-type sections in the presence of cold Triton X-100 resulted in GD1a redistribution from wild-type gray matter to knockout white matter. GM1, which is normally enriched in white matter, remained in white matter after cold detergent treatment and did not migrate to knockout mouse brain sections. However, when gray matter gangliosides were enzymatically converted into GM1 in situ, the newly formed GM1 transmigrated to knockout mouse brain sections in the presence of cold detergent. When purified GD1a was added to knockout mouse brain sections in the presence of cold Triton X-100, it preferentially incorporated into white matter tracts. These data demonstrate that brain white matter is a sink for gangliosides, which redistribute from gray matter in the presence of low concentrations of cold Triton X-100. A GPI-anchored protein, Thy-1, also transmigrated from wild-type to Thy-1 knockout mouse brain sections in the presence of detergent at 4 degrees C, although less efficiently than did gangliosides. These data raise technical challenges for using nonionic detergents in certain histological protocols and for isolation of lipid rafts from brain tissue.


Assuntos
Química Encefálica , Gangliosídeo G(M1)/análise , Gangliosídeos/análise , Microdomínios da Membrana/química , Antígenos Thy-1/análise , Animais , Anticorpos Monoclonais/imunologia , Encéfalo/citologia , Encéfalo/imunologia , Dissecação , Gangliosídeo G(M1)/genética , Gangliosídeos/genética , Glicosilfosfatidilinositóis/química , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/imunologia , Camundongos , Camundongos Knockout , Octoxinol/química , Octoxinol/farmacologia , Antígenos Thy-1/genética
13.
Carbohydr Res ; 338(16): 1621-39, 2003 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-12873419

RESUMO

Systematic synthesis and myelin-associated glycoprotein (MAG)-binding activity of novel sulfated GM1b analogues structurally related to Chol-1 (alpha-series) gangliosides, high-affinity ligands for neural siglecs, are described. The suitably protected gangliotriose derivatives, 2-(trimethylsilyl)ethyl 2-acetamido-2-deoxy-6-O-levulinoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside and 2-(trimethylsilyl)ethyl 2-acetamido-2-deoxy-6-O-levulinoyl-beta-D-galactopyranosyl-(1-->4)-2,6-di-O-benzyl-3-O-levulinoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside were each glycosylated with alpha-NeuAc-(2-->3)-galactose donor to give the corresponding pentasaccharides in 94% (beta1,3 glycoside only) and 90% (beta1,3:beta1,4 = 2:1), respectively. After proper manipulation of the protecting groups, the pentasaccharides were converted into three novel sulfated GM1b gangliosides by the successive introduction of the ceramide and sulfo groups, followed by complete deprotection. Among the synthetic gangliosides, GSC-338 (II3III6-disulfate of iso-GM1b) was surprisingly found to be the most potent MAG binding structure tested to date.


Assuntos
Antígenos de Superfície/química , Gangliosídeo G(M1)/análogos & derivados , Gangliosídeo G(M1)/síntese química , Gangliosídeo G(M1)/metabolismo , Gangliosídeos/química , Glicoproteína Associada a Mielina/metabolismo , Animais , Biomimética , Sequência de Carboidratos , Linhagem Celular , Chlorocebus aethiops , Combinação de Medicamentos , Gangliosídeo G(M1)/química , Ligantes , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Sulfamonometoxina/química , Trimetoprima/química
14.
Neurochem Res ; 27(7-8): 847-55, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12374222

RESUMO

Gangliosides function in both physiological and pathological molecular recognition. Although much research has focused on the role of ganglioside glycans in recognition, fewer studies have addressed the role of the ceramide moiety. Ceramides of major brain gangliosides are composed predominantly of monounsaturated 18-carbon and 20-carbon long chain bases with a saturated 18-carbon fatty acid amide. In contrast, gangliosides of X-linked adrenoleukodystrophy patients are characterized by abnormal very long chain fatty acids that are proposed to be associated with autoimmune inflammation. In the current study we synthesized and characterized derivatives of the major brain ganglioside GD1a bearing defined very long chain fatty acid amides (C24:0, C24:1, and C26:0). When tested in a solid phase binding assay in the presence of auxiliary membrane lipids, GD1a species with long chain fatty acids were up to 8-fold more potent than normal brain GD1a in binding four different anti-GD1a monoclonal antibodies. These data support the hypothesis that gangliosides bearing very long chain fatty acids are differentially displayed on membranes, which may lead to altered antigenicity.


Assuntos
Anticorpos/imunologia , Afinidade de Anticorpos , Ácidos Graxos/metabolismo , Gangliosídeos/imunologia , Animais , Bovinos , Cromatografia em Camada Fina , Espectrometria de Massas por Ionização por Electrospray
15.
Proc Natl Acad Sci U S A ; 99(12): 8412-7, 2002 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-12060784

RESUMO

Myelin-associated glycoprotein (MAG) binds to the nerve cell surface and inhibits nerve regeneration. The nerve cell surface ligand(s) for MAG are not established, although sialic acid-bearing glycans have been implicated. We identify the nerve cell surface gangliosides GD1a and GT1b as specific functional ligands for MAG-mediated inhibition of neurite outgrowth from primary rat cerebellar granule neurons. MAG-mediated neurite outgrowth inhibition is attenuated by (i) neuraminidase treatment of the neurons; (ii) blocking neuronal ganglioside biosynthesis; (iii) genetically modifying the terminal structures of nerve cell surface gangliosides; and (iv) adding highly specific IgG-class antiganglioside mAbs. Furthermore, neurite outgrowth inhibition is mimicked by highly multivalent clustering of GD1a or GT1b by using precomplexed antiganglioside Abs. These data implicate the nerve cell surface gangliosides GD1a and GT1b as functional MAG ligands and suggest that the first step in MAG inhibition is multivalent ganglioside clustering.


Assuntos
Gangliosídeos/fisiologia , Glicoproteína Associada a Mielina/fisiologia , Regeneração Nervosa/fisiologia , Neuritos/fisiologia , Animais , Anticorpos Monoclonais/farmacologia , Células CHO , Cricetinae , Gangliosídeos/biossíntese , Gangliosídeos/imunologia , Glicoesfingolipídeos/metabolismo , Ligantes , Regeneração Nervosa/efeitos dos fármacos , Neuritos/ultraestrutura , Ratos
16.
Anal Biochem ; 302(2): 276-84, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11878808

RESUMO

Mice genetically engineered to lack complex gangliosides are improved hosts for raising antibodies against those gangliosides. We report the generation and characterization of nine immunoglobulin G (IgG)-class monoclonal antibodies (mAbs) raised against the four major brain gangliosides in mammals. These include (designated as ganglioside specificity-IgG subclass) two anti-GM1 mAbs (GM1-1, GM1-2b), three anti-GD1a mAbs (GD1a-1, GD1a-2a, GD1a-2b), one anti-GD1b mAb (GD1b-1), and three anti-GT1b mAbs (GT1b-1, GT1b-2a, GT1b-2b). Each mAb demonstrated high specificity, with little or no cross-reactivity with other major brain gangliosides. Enzyme-linked immunosorbent assay (ELISA) screening against 14 closely related synthetic and purified gangliosides confirmed the high specificity, with no significant cross-reactivity except that of the anti-GD1a mAbs for the closely related minor ganglioside GT1a alpha. All of the mAbs were useful for ELISA, TLC immunooverlay, and immunocytochemistry. Neural cells from wild-type rats and mice were immunostained to differing levels with the anti-ganglioside antibodies, whereas neural cells from mice engineered to lack complex gangliosides (lacking the ganglioside-specific biosynthetic enzyme UDP-GalNAc:GM3/GD3 N-acetylgalactosaminyltransferase) remained unstained, demonstrating that most of the mAbs react only with gangliosides and not with related structures on glycoproteins. These mAbs may provide useful tools for delineation of the expression and function of the major brain gangliosides and for probing the pathology of anti-ganglioside autoimmune diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Cerebelo/química , Gangliosídeos/imunologia , Imunoglobulina G/imunologia , Animais , Animais Geneticamente Modificados , Reações Antígeno-Anticorpo , Sítios de Ligação , Gangliosídeo G(M3)/imunologia , Imuno-Histoquímica/métodos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA