Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(41): 38386-38393, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867716

RESUMO

Tip-enhanced photoluminescence (TEPL) microscopy allows for the correlation of scanning probe microscopic images and photoluminescent spectra at the nanoscale level in a similar way to tip-enhanced Raman scattering (TERS) microscopy. However, due to the higher cross-section of fluorescence compared to Raman scattering, the diffraction-limited background signal generated by far-field excitation is a limiting factor in the achievable spatial resolution of TEPL. Here, we demonstrate a way to overcome this drawback by using remote excitation TEPL (RE-TEPL). With this approach, the excitation and detection positions are spatially separated, minimizing the far-field contribution. Two probe designs are evaluated, both experimentally and via simulations. The first system consists of gold nanoparticles (AuNPs) through photoinduced deposition on a silver nanowire (AgNW), and the second system consists of two offset parallel AgNWs. This latter coupler system shows a higher coupling efficiency and is used to successfully demonstrate RE-TEPL spectral mapping on a MoSe2/WSe2 lateral heterostructure to reveal spatial heterogeneity at the heterojunction.

2.
ACS Omega ; 8(39): 35638-35652, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810698

RESUMO

Physisorption on hexagonal boron nitride (hBN) gained interest over the years thanks to its properties (chemically and thermally stable, insulating properties, etc.) and similarities to the well-known graphene. A recent study showed flat-on adsorption of several cationic thiacarbocyanine dyes on hBN with a tendency to form weakly coupled H- or I-type aggregates, while a zwitterionic thiacarbocyanine dye rather led to a tilted adsorption. With this in-depth time-resolved study using the TC-SPC technique, we confirm the results proven by adsorption isotherms, atomic force microscopy, and stationary state spectroscopy combined with molecular mechanics simulations and estimation of the corresponding exciton interaction. The absence of a systematic trend for the dependence of the decay times, normalized amplitudes of the decay components, and contribution of different components to the stationary emission spectra upon the emission wavelength observed for all studied dyes and coverages suggests the occurrence of a single emitting species. At low coverage levels, the non-mono-exponential character of the decays was attributed to adsorption on different sites characterized by different intramolecular rotational freedom or energy transfer to nonfluorescent traps or a combination of both. The difference between the decay rates of the four dyes reflects a different density of the nonfluorescent traps. Although the decay time of the unquenched dyes was in the order of magnitude of that of dye monomers in a rigid environment, it is also compatible with weakly coupled aggregates such as proposed earlier based on the stationary spectra. Hence, the adsorption leads to a rigid environment of the dyes, blocking internal conversion. Increasing the concentration of the dye solution from which the adsorption on hBN occurs increases not only the coverage of the hBN surface but also the extent of energy transfer to nonfluorescent traps. For TDC (5,5-dichloro-3-3'-diethyl-9-ethyl-thiacarbocyanine) and TD2 (3-3'-diethyl-9-ethyl-thiacarbocyanine), besides direct energy transfer to traps, exciton hopping between dye dimers followed by energy transfer to these traps occurs, which resulted in a decreasing decay time of the longest decaying component. For all dyes, it was also possible to analyze the fluorescence decays as a stretched exponential as would be expected for energy transfer to randomly distributed traps in a two-dimensional (2D) geometry. This analysis yielded a fluorescence decay time of the unquenched dyes similar to the longest decay time obtained by analysis of the fluorescence decays as a sum of three of four exponentials.

3.
J Phys Chem Lett ; 14(34): 7626-7631, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37602768

RESUMO

Electrostatic interactions between the zeolite cavity and confined noble-metal nanoparticles govern the photophysical properties of these materials. A better understanding of these interactions can afford new perspectives in optoelectronics applications. We investigated this interplay by revealing the peculiar photophysical properties of Ag clusters embedded in nanosized faujasite zeolite structures. Crystal size and steady state optical properties were characterized via integrated light and electron microscopy (ILEM) and steady state spectroscopy. Extensive time-resolved spectroscopy experiments performed on femtosecond to millisecond time scales revealed excited state dynamics that are intriguingly different from those observed for their micrometer sized counterpart. Multiscale modeling investigations were performed to rationalize the effect of the crystal size on the photophysical properties. Our results indicate that for the nanosized crystals, the emissive properties as well as the radiative and nonradiative processes involving the Ag clusters are dramatically dependent on the surface charge density and surface charge balance.

4.
ACS Appl Mater Interfaces ; 15(5): 7294-7307, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705637

RESUMO

Lead halide perovskites are promising candidates for high-performance light-emitting diodes (LEDs); however, their applicability is limited by their structural instability toward moisture. Although a deliberate addition of water to the precursor solution has recently been shown to improve the crystallinity and optical properties of perovskites, the corresponding thin films still do not exhibit a near-unity quantum yield. Herein, we report that the direct addition of a minute amount of water to post-treated formamidinium lead bromide (FAPbBr3) nanocrystals (NCs) substantially enhances the stability while achieving a 95% photoluminescence quantum yield in a NC thin film. We unveil the mechanism of how moisture assists in the formation of an additional NH4Br component. Alongside, we demonstrate the crucial role of moisture in assisting localized etching of the perovskite crystal, facilitating the partial incorporation of NH4+, which is key for improved performance under ambient conditions. Finally, as a proof-of-concept, the application of post-treated and water-treated perovskites is tested in LEDs, with the latter exhibiting a superior performance, offering opportunities toward commercial application in moisture-stable optoelectronics.

5.
Opt Express ; 30(24): 43021-43036, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523010

RESUMO

Single dielectric microspheres can manipulate light focusing and collection to enhance optical interaction with surfaces. To demonstrate this principle, we experimentally investigate the enhancement of the Raman signal collected by a single dielectric microsphere, with a radius much larger than the exciting laser spot size, residing on the sample surface. The absolute microsphere-assisted Raman signal from a single graphene layer measured in air is more than a factor of two higher than that obtained with a high numerical aperture objective. Results from Mie's theory are used to benchmark numerical simulations and an analytical model to describe the isolated microsphere focusing properties. The analytical model and the numerical simulations justify the Raman signal enhancement measured in the microsphere-assisted Raman spectroscopy experiments.

6.
Org Lett ; 24(51): 9386-9391, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36525615

RESUMO

Herein, we describe a methodology to construct polycyclic pyrrolophenanthridones with an (amino)alkyl side chain that involves visible-light-induced decarboxylative radical addition for the intermolecular dearomatization of indoles and subsequent photoinduced C(sp2)-X bond activation via photoexcited ketones for an intramolecular cyclization cascade. Carboxylic acids serve both as a radical source toward indole dearomatization and as reductants to initiate an electron transfer with photoexcited N-acylindole derivatives in the reaction toward pyrrolophenantridone skeletons, which occurs under mild reaction conditions with good functional group tolerance.

7.
Chem Sci ; 13(39): 11560-11569, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36320393

RESUMO

Zeolite confined silver clusters (AgCLs) have attracted extensive attention due to their remarkable luminescent properties, but the elucidation of the underlying photophysical processes and especially the excited-state dynamics remains a challenge. Herein, we investigate the bright photoluminescence of AgCLs confined in Linde Type A zeolites (LTA) by systematically varying the temperature (298-77 K) and co-cation composition (Li/Na) and examining their respective influence on the steady-state and time-resolved photoluminescence. The observed polychromatic emission of the tetrahedral Ag4(H2O) n 2+ clusters ranges from orange to violet and three distinct emitting species are identified, corresponding to three long-lived triplet states populated consecutively and separated by a small energy barrier. These long-lived species are at the origin of the polychromatic luminescence with high photoluminescence quantum yields. Furthermore, the Li-content dependence of decay times points to the importance of guest-host-guest interactions in tuning the luminescent properties with a 43% decrease of the dominating decay time by increasing Li content. Based on our findings, a simplified model for the photophysical kinetics is proposed that identifies the excited-state processes. The results outlined here pave the way for a rational design of confined metal clusters in various frames and inspire the specified applications of Ag-zeolites.

8.
Nanoscale Adv ; 4(15): 3272-3281, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36132818

RESUMO

Detection and size estimation of combustion-derived carbonaceous particles (CDCPs) are important to understand their toxicity. Size determination of individual nano- and microparticles (NMPs) based on scattered light is a straightforward method. However, detection and sizing of CDCPs in biological samples based on scattering alone are not possible due to the compositional heterogeneity of NMPs present in biological samples. Label-free identification of CDCPs based on unique white light (WL) emission, using femtosecond (fs) pulsed near-infrared (NIR) lasers, has emerged as a reliable method even in complex biological samples. However, size estimation of CDCPs in biological samples using label-free techniques is still lacking. Here we report the development of a dual-channel multiphoton flow cytometry (DCMPFC) setup for label-free identification and size-determination of CDCPs in suspensions. Scattering intensity calibration with reference polystyrene (PS) nanoparticles (NPs) and Mie Theory allow us to determine the sizes of CDCPs in aqueous suspensions. Further, the relationship between particle sizes and WL emission intensity was determined, and the sizes of CDCPs in urine samples could also be estimated. This approach is believed to open new opportunities for the quantification and size determination of CDCPs, originating from exposure to air pollution, in liquid biopsies. This is an important step in determining the CDCP exposure of individual persons.

9.
Angew Chem Int Ed Engl ; 61(39): e202204561, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35931663

RESUMO

Developing light-harvesting materials with broad spectral response is of fundamental importance in full-spectrum solar energy conversion. We found that, when a series of earth-abundant metal (Cu, Co, Ni and Fe) salts are dissolved in coordinating solvents uniformly dispersed nanodots (NDs) are formed rather than fully dissolving as molecular species. The previously unrecognized formation of this condensed state is ascribed to spontaneous aggregation of molecular transition-metal-complexes (TMCs) via weak intermolecular interactions, which results in redshifted and broadened absorption into the NIR region (200-1100 nm). Typical photoredox reactions, such as carbonylation and oxidative dehydrogenation, well demonstrate the feasibility of efficient utilization of NIR light (λ>780 nm) by TMCs NDs. Our finding provides a conceptually new strategy for extending the absorption towards low energy photons in solar energy harvesting and conversion via photoredox transformations.

10.
Nanoscale ; 14(14): 5439-5446, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322821

RESUMO

Tip-enhanced Raman scattering (TERS) microscopy is an advanced technique for investigation at the nanoscale because of its excellent properties, such as its label-free functionality, non-invasiveness, and ability to simultaneously provide topographic and chemical information. The probe plays a crucial role in TERS technique performance. Widely used AFM-TERS probes fabricated with metal deposition suffer from relatively low reproductivity as well as limited mapping and storage lifetime. To solve the reproducibility issue, silver nanowire (AgNW)-based TERS probes were developed, which, thanks to the high homogeneity of the liquid-phase synthesis of AgNW, can achieve high TERS performance with excellent probe reproductivity, but still present short lifetime due to probe oxidation. In this work, a simple Au coating method is proposed to overcome the limited lifetime and improve the performance of the AgNW-based TERS probe. For the Au-coating, different [Au]/[Ag] molar ratios were investigated. The TERS performance was evaluated in terms of changes in the enhancement factor (EF) and signal-to-noise ratio through multiple mappings and the storage lifetime in air. The Au-coated AgNWs exhibited higher EF than pristine AgNWs and galvanically replaced AgNWs with no remarkable difference between the two molar ratios tested. However, for longer scanning time and multiple mappings, the probes obtained with low Au concentration showed much longer-term stability and maintained a high EF. Furthermore, the Au-coated AgNW probes were found to possess a longer storage lifetime in air, allowing for long and multiple TERS mappings with one single probe.

11.
J Phys Chem Lett ; 12(31): 7466-7473, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34339202

RESUMO

LSSmOrange is a fluorescent protein that exhibits a large energy gap between absorption and emission, which makes it a useful tool for multicolor bioimaging. This characteristic of LSSmOrange originates from excited-state proton transfer (ESPT): The neutral chromophore is predominantly present in the ground state while the bright fluorescence is emitted from the anionic excited state after ESPT. Interestingly, it was reported that this ESPT process follows bimodal dynamics, but its origin has not clearly been understood. We investigate ESPT of LSSmOrange using time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS) that provides femtosecond time-resolved Raman spectra. The results indicate that the bimodal ESPT dynamics originates from the structural heterogeneity of the chromophore. Species-associated Raman spectra obtained by spectral analysis based on singular value decomposition (SVD) suggest that cis and trans chromophores coexist in the ground state. It is considered that these two forms are photoexcited and undergo ESPT in parallel, resulting in the bimodal dynamics of ESPT in LSSmOrange.

12.
Nat Commun ; 12(1): 2541, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953187

RESUMO

Förster resonance energy transfer (FRET) between fluorescent proteins has become a common platform for designing genetically encoded biosensors. For live cell imaging, the acceptor-to-donor intensity ratio is most commonly used to readout FRET efficiency, which largely depends on the proximity between donor and acceptor. Here, we introduce an anisotropy-based mode of FRET detection (FADED: FRET-induced Angular Displacement Evaluation via Dim donor), which probes for relative orientation rather than proximity alteration. A key element in this technique is suppression of donor bleed-through, which allows measuring purer sensitized acceptor anisotropy. This is achieved by developing Geuda Sapphire, a low-quantum-yield FRET-competent fluorescent protein donor. As a proof of principle, Ca2+ sensors were designed using calmodulin as a sensing domain, showing sigmoidal dose response to Ca2+. By monitoring the anisotropy, a Ca2+ rise in living HeLa cells is observed upon histamine challenging. We conclude that FADED provides a method for quantifying the angular displacement via FRET.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Imagem Óptica/métodos , Anisotropia , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Escherichia coli/genética , Escherichia coli/metabolismo , Células HeLa , Humanos
13.
RSC Adv ; 12(1): 389-394, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35424530

RESUMO

Organic materials have attracted considerable attention in nonlinear optical (NLO) applications as they have several advantages over inorganic materials, including high NLO response, and fast response time as well as low-cost and easy fabrication. Lithium-containing C60 (Li@C60) is promising for NLO over other organic materials because of its strong NLO response proven by theoretical and experimental studies. However, the low purity of Li@C60 has been a bottleneck for applications in the fields of solar cells, electronics and optics. In 2010, highly purified Li@C60 was finally obtained, encouraging further studies. In this study, we demonstrate a facile method to fabricate thin films of Li@C60 and their strong NLO potential for high harmonic generation by showing its comparatively strong emission of degenerate-six-wave mixing, a fifth-order NLO effect.

14.
Nanoscale ; 12(42): 21951, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33112320

RESUMO

Correction for 'FRET-based intracellular investigation of nanoprodrugs toward highly efficient anticancer drug delivery' by Farsai Taemaitree et al., Nanoscale, 2020, 12, 16710-16715, DOI: 10.1039/D0NR04910G.

15.
Chem Commun (Camb) ; 56(87): 13331-13334, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33063066

RESUMO

Defects influence the properties of metal-organic frameworks (MOFs), such as their storage amount and the diffusion kinetics of gas molecules. However, the spatial distribution of defects is still poorly understood due to a lack of visualization methods. Here, we present a new method using nonlinear optics (NLO) that allows the visualization of defects within MOFs.

16.
Adv Mater ; 32(40): e2001878, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32864757

RESUMO

Lead-free double perovskites have great potential as stable and nontoxic optoelectronic materials. Recently, Cs2 AgBiBr6 has emerged as a promising material, with suboptimal photon-to-charge carrier conversion efficiency, yet well suited for high-energy photon-detection applications. Here, the optoelectronic and structural properties of pure Cs2 AgBiBr6 and alkali-metal-substituted (Cs1- x Yx )2 AgBiBr6 (Y: Rb+ , K+ , Na+ ; x = 0.02) single crystals are investigated. Strikingly, alkali-substitution entails a tunability to the material system in its response to X-rays and structural properties that is most strongly revealed in Rb-substituted compounds whose X-ray sensitivity outperforms other double-perovskite-based devices reported. While the fundamental nature and magnitude of the bandgap remains unchanged, the alkali-substituted materials exhibit a threefold boost in their fundamental carrier recombination lifetime at room temperature. Moreover, an enhanced electron-acoustic phonon scattering is found compared to Cs2 AgBiBr6 . The study thus paves the way for employing cation substitution to tune the properties of double perovskites toward a new material platform for optoelectronics.

17.
Nanoscale ; 12(32): 16710-16715, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32785392

RESUMO

In order to overcome unpredictable side-effects and increased cytotoxicity of conventional carrier-based anticancer drug delivery systems, several systems that consist exclusively of the pure drug (or prodrug) have been proposed. The behavior and dynamics of these systems after entering cancer cells are, however, still unknown, hindering their progress towards in vivo and clinical applications. Here, we report a comprehensive in cellulo study of carrier-free SN-38 nanoprodrugs (NPDs), previously developed by our group. The work shows the intracellular uptake, localization, and degradation of the NPDs via FRET microscopy. Accordingly, new FRET-NPDs were chemically synthesized and characterized. Prodrug to drug conversion and therapeutic efficiency were also validated. Our work provides crucial information for the application of NPDs as drug delivery systems and demonstrates their outstanding potential as next-generation anticancer nanomedicines.


Assuntos
Antineoplásicos , Pró-Fármacos , Sistemas de Liberação de Medicamentos , Transferência Ressonante de Energia de Fluorescência , Nanomedicina
18.
Nanomaterials (Basel) ; 10(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560167

RESUMO

By simultaneous occlusion of rationally chosen dyes, emitting in the blue, green and red region of the electromagnetic spectrum, into the one-dimensional channels of a magnesium-aluminophosphate with AEL-zeolitic type structure, MgAPO-11, a solid-state system with efficient white light emission under UV excitation, was achieved. The dyes herein selected-acridine (AC), pyronin Y (PY), and hemicyanine LDS722-ensure overall a good match between their molecular sizes and the MgAPO-11 channel dimensions. The occlusion was carried out via the crystallization inclusion method, in a suitable proportion of the three dyes to render efficient white fluorescence systems by means of fine-tuned FRET (fluorescence resonance energy transfer) energy transfer processes. The FRET processes are thoroughly examined by the analysis of fluorescence decay traces using the femtosecond fluorescence up-conversion technique.

19.
Methods Appl Fluoresc ; 8(2): 024004, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31995792

RESUMO

Metal clusters confined inside zeolite materials display remarkable luminescent properties, making them very suitable as potential alternative phosphors in white LED applications. However, up to date, only single-color emitters have been reported for luminescent metal-exchanged zeolites. In this study, we synthesized and characterized white emitting silver-sulfur zeolites, which show a remarkable color tunability upon the incorporation of silver species in highly luminescent sulfur-zeolites. Via a combined steady-state and time-resolved photoluminescence spectroscopy characterization, we suggest that the observed luminescence and tunability arise from the presence of two different species. The first associated to an orange-red emitting silver cluster (Ag-CL), whereas the second is related to a blue-white emitting S-Ag-species. The relative contribution of both luminescent species depends on the synthesis procedure. It was shown that the formation of the blue-white emitting S-Ag-species is favored upon a heat-treatment of the samples.

20.
Nanophotonics ; 10(8): 2145-2156, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36406045

RESUMO

Lead halide perovskites have attracted tremendous attention in photovoltaics due to their impressive optoelectronic properties. However, the poor stability of perovskite-based devices remains a bottleneck for further commercial development. Two-dimensional perovskites have great potential in optoelectronic devices, as they are much more stable than their three-dimensional counterparts and rapidly catching up in performance. Herein, we demonstrate high-quality two-dimensional novel perovskite thin films with alternating cations in the interlayer space. This innovative perovskite provides highly stable semiconductor thin films for efficient near-infrared light-emitting diodes (LEDs). Highly efficient LEDs with tunable emission wavelengths from 680 to 770 nm along with excellent operational stability are demonstrated by varying the thickness of the interlayer spacer cation. Furthermore, the best-performing device exhibits an external quantum efficiency of 3.4% at a high current density (J) of 249 mA/cm2 and remains above 2.5% for a J up to 720 mA cm-2, leading to a high radiance of 77.5 W/Sr m2 when driven at 6 V. The same device also shows impressive operational stability, retaining almost 80% of its initial performance after operating at 20 mA/cm2 for 350 min. This work provides fundamental evidence that this novel alternating interlayer cation 2D perovskite can be a promising and stable photonic emitter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA