RESUMO
Breast cancer (BC) is defined by distinct molecular subtypes with different cells of origin. The transcriptional networks that characterize the subtype-specific tumor-normal lineages are not established. In this work, we applied bulk, single-cell and single-nucleus multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 patients with BC to show characteristic links in gene expression and chromatin accessibility between BC subtypes and their putative cells of origin. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal BC and luminal mature cells and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like (SOX6 and KCNQ3) and luminal A/B (FAM155A and LRP1B) lineages. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like BC, suggesting an altered means of immune dysfunction. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single-cell level is a powerful tool for investigating cancer lineage and highlight transcriptional networks that define basal and luminal BC lineages.
RESUMO
Accurate assessment of therapy response in myelodysplastic neoplasm (MDS) has been challenging. Directly monitoring mutational disease burden may be useful, but is not currently included in MDS response criteria, and the correlation of mutational burden and traditional response endpoints is not completely understood. Here, we used genome-wide and targeted next-generation sequencing (NGS) to monitor clonal and subclonal molecular disease burden in 452 samples from 32 patients prospectively treated in a clinical trial. Molecular responses were compared with International Working Group (IWG) 2006-defined response assessments. We found that myeloblast percentage consistently underestimates MDS molecular disease burden and that mutational clearance patterns for marrow complete remission (mCR), which depends on myeloblast assessment, was not different than stable disease or bone marrow aplasia, underscoring a major limitation of using mCR. In contrast, achieving a complete remission (CR) was associated with the highest level of mutation clearance and lowest residual mutational burden in higher-risk MDS patients. A targeted gene panel approach was inferior to genome-wide sequencing in defining subclones and their molecular responses but may be adequate for monitoring molecular disease burden when a targeted gene is present in the founding clone. Our work supports incorporating serial NGS-based monitoring into prospective MDS clinical trials.
RESUMO
Somatic mutation phasing informs our understanding of cancer-related events, like driver mutations. We generated linked-read whole genome sequencing data for 23 samples across disease stages from 14 multiple myeloma (MM) patients and systematically assigned somatic mutations to haplotypes using linked-reads. Here, we report the reconstructed cancer haplotypes and phase blocks from several MM samples and show how phase block length can be extended by integrating samples from the same individual. We also uncover phasing information in genes frequently mutated in MM, including DIS3, HIST1H1E, KRAS, NRAS, and TP53, phasing 79.4% of 20,705 high-confidence somatic mutations. In some cases, this enabled us to interpret clonal evolution models at higher resolution using pairs of phased somatic mutations. For example, our analysis of one patient suggested that two NRAS hotspot mutations occurred on the same haplotype but were independent events in different subclones. Given sufficient tumor purity and data quality, our framework illustrates how haplotype-aware analysis of somatic mutations in cancer can be beneficial for some cancer cases.
RESUMO
ABSTRACT: Personalized cancer vaccines designed to target neoantigens represent a promising new treatment paradigm in oncology. In contrast to classical idiotype vaccines, we hypothesized that "polyvalent" vaccines could be engineered for the personalized treatment of follicular lymphoma (FL) using neoantigen discovery by combined whole-exome sequencing (WES) and RNA sequencing (RNA-seq). Fifty-eight tumor samples from 57 patients with FL underwent WES and RNA-seq. Somatic and B-cell clonotype neoantigens were predicted and filtered to identify high-quality neoantigens. B-cell clonality was determined by the alignment of B-cell receptor (BCR) CDR3 regions from RNA-seq data, grouping at the protein level, and comparison with the BCR repertoire from healthy individuals using RNA-seq data. An average of 52 somatic mutations per patient (range, 2-172) were identified, and ≥2 (median, 15) high-quality neoantigens were predicted for 56 of 58 FL samples. The predicted neoantigen peptides were composed of missense mutations (77%), indels (9%), gene fusions (3%), and BCR sequences (11%). Building off of these preclinical analyses, we initiated a pilot clinical trial using personalized neoantigen vaccination combined with PD-1 blockade in patients with relapsed or refractory FL (#NCT03121677). Synthetic long peptide vaccines targeting predicted high-quality neoantigens were successfully synthesized for and administered to all 4 patients enrolled. Initial results demonstrate feasibility, safety, and potential immunologic and clinical responses. Our study suggests that a genomics-driven personalized cancer vaccine strategy is feasible for patients with FL, and this may overcome prior challenges in the field. This trial was registered at www.ClinicalTrials.gov as #NCT03121677.
Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Linfoma Folicular , Medicina de Precisão , Humanos , Linfoma Folicular/terapia , Linfoma Folicular/imunologia , Linfoma Folicular/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Antígenos de Neoplasias/imunologia , Medicina de Precisão/métodos , Pessoa de Meia-Idade , Feminino , Masculino , Idoso , Adulto , Sequenciamento do Exoma , MutaçãoRESUMO
The malignant Hodgkin and Reed Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) are scarce in affected lymph nodes, creating a challenge to detect driver somatic mutations. As an alternative to cell purification techniques, we hypothesized that ultra-deep exome sequencing would allow genomic study of HRS cells, thereby streamlining analysis and avoiding technical pitfalls. To test this, 31 cHL tumor/normal pairs were exome sequenced to approximately 1,000× median depth of coverage. An orthogonal error-corrected sequencing approach verified >95% of the discovered mutations. We identified mutations in genes novel to cHL including: CDH5 and PCDH7, novel stop gain mutations in IL4R, and a novel pattern of recurrent mutations in pathways regulating Hippo signaling. As a further application of our exome sequencing, we attempted to identify expressed somatic single-nucleotide variants (SNV) in single-nuclei RNA sequencing (snRNA-seq) data generated from a patient in our cohort. Our snRNA analysis identified a clear cluster of cells containing a somatic SNV identified in our deep exome data. This cluster has differentially expressed genes that are consistent with genes known to be dysregulated in HRS cells (e.g., PIM1 and PIM3). The cluster also contains cells with an expanded B-cell clonotype further supporting a malignant phenotype. This study provides proof-of-principle that ultra-deep exome sequencing can be utilized to identify recurrent mutations in HRS cells and demonstrates the feasibility of snRNA-seq in the context of cHL. These studies provide the foundation for the further analysis of genomic variants in large cohorts of patients with cHL. SIGNIFICANCE: Our data demonstrate the utility of ultra-deep exome sequencing in uncovering somatic variants in Hodgkin lymphoma, creating new opportunities to define the genes that are recurrently mutated in this disease. We also show for the first time the successful application of snRNA-seq in Hodgkin lymphoma and describe the expression profile of a putative cluster of HRS cells in a single patient.
Assuntos
Doença de Hodgkin , Humanos , Doença de Hodgkin/genética , Células de Reed-Sternberg/metabolismo , Mutação/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Nuclear Pequeno/metabolismoRESUMO
Breast cancer is a heterogeneous disease, and treatment is guided by biomarker profiles representing distinct molecular subtypes. Breast cancer arises from the breast ductal epithelium, and experimental data suggests breast cancer subtypes have different cells of origin within that lineage. The precise cells of origin for each subtype and the transcriptional networks that characterize these tumor-normal lineages are not established. In this work, we applied bulk, single-cell (sc), and single-nucleus (sn) multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 breast cancer patients to show characteristic links in gene expression and chromatin accessibility between breast cancer subtypes and their putative cells of origin. We applied the PAM50 subtyping algorithm in tandem with bulk RNA-seq and snRNA-seq to reliably subtype even low-purity tumor samples and confirm promoter accessibility using snATAC. Trajectory analysis of chromatin accessibility and differentially accessible motifs clearly connected progenitor populations with breast cancer subtypes supporting the cell of origin for basal-like and luminal A and B tumors. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal breast cancer and luminal mature cells, and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like ( PRKCA , SOX6 , RGS6 , KCNQ3 ) and luminal A/B ( FAM155A , LRP1B ) lineages, with expression in both precursor and cancer cells and further upregulation in tumors. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like breast cancer, suggesting altered means of immune dysfunction among breast cancer subtypes. We used spatial transcriptomics and multiplex imaging to provide spatial detail for key markers of benign and malignant cell types and immune cell colocation. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single cell level is a powerful tool for investigating breast cancer lineage development and highlight transcriptional networks that define basal and luminal breast cancer lineages.
RESUMO
TP53-mutated myeloid malignancies are associated with complex cytogenetics and extensive structural variants, which complicates detailed genomic analysis by conventional clinical techniques. We performed whole-genome sequencing (WGS) of 42 acute myeloid leukemia (AML)/myelodysplastic syndromes (MDS) cases with paired normal tissue to better characterize the genomic landscape of TP53-mutated AML/MDS. WGS accurately determines TP53 allele status, a key prognostic factor, resulting in the reclassification of 12% of cases from monoallelic to multihit. Although aneuploidy and chromothripsis are shared with most TP53-mutated cancers, the specific chromosome abnormalities are distinct to each cancer type, suggesting a dependence on the tissue of origin. ETV6 expression is reduced in nearly all cases of TP53-mutated AML/MDS, either through gene deletion or presumed epigenetic silencing. Within the AML cohort, mutations of NF1 are highly enriched, with deletions of 1 copy of NF1 present in 45% of cases and biallelic mutations in 17%. Telomere content is increased in TP53-mutated AMLs compared with other AML subtypes, and abnormal telomeric sequences were detected in the interstitial regions of chromosomes. These data highlight the unique features of TP53-mutated myeloid malignancies, including the high frequency of chromothripsis and structural variation, the frequent involvement of unique genes (including NF1 and ETV6) as cooperating events, and evidence for altered telomere maintenance.
Assuntos
Cromotripsia , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Humanos , Mutação , Aberrações Cromossômicas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Transtornos Mieloproliferativos/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Genômica , Proteína Supressora de Tumor p53/genéticaRESUMO
TP53 -mutated myeloid malignancies are most frequently associated with complex cytogenetics. The presence of complex and extensive structural variants complicates detailed genomic analysis by conventional clinical techniques. We performed whole genome sequencing of 42 AML/MDS cases with paired normal tissue to characterize the genomic landscape of TP53 -mutated myeloid malignancies. The vast majority of cases had multi-hit involvement at the TP53 genetic locus (94%), as well as aneuploidy and chromothripsis. Chromosomal patterns of aneuploidy differed significantly from TP53 -mutated cancers arising in other tissues. Recurrent structural variants affected regions that include ETV6 on chr12p, RUNX1 on chr21, and NF1 on chr17q. Most notably for ETV6 , transcript expression was low in cases of TP53 -mutated myeloid malignancies both with and without structural rearrangements involving chromosome 12p. Telomeric content is increased in TP53 -mutated AML/MDS compared other AML subtypes, and telomeric content was detected adjacent to interstitial regions of chromosomes. The genomic landscape of TP53 -mutated myeloid malignancies reveals recurrent structural variants affecting key hematopoietic transcription factors and telomeric repeats that are generally not detected by panel sequencing or conventional cytogenetic analyses. Key Points: WGS comprehensively determines TP53 mutation status, resulting in the reclassification of 12% of cases from mono-allelic to multi-hit Chromothripsis is more frequent than previously appreciated, with a preference for specific chromosomes ETV6 is deleted in 45% of cases, with evidence for epigenetic suppression in non-deleted cases NF1 is mutated in 48% of cases, with multi-hit mutations in 17% of these cases TP53 -mutated AML/MDS is associated with altered telomere content compared with other AMLs.
RESUMO
Pancreatic ductal adenocarcinoma is a lethal disease with limited treatment options and poor survival. We studied 83 spatial samples from 31 patients (11 treatment-naïve and 20 treated) using single-cell/nucleus RNA sequencing, bulk-proteogenomics, spatial transcriptomics and cellular imaging. Subpopulations of tumor cells exhibited signatures of proliferation, KRAS signaling, cell stress and epithelial-to-mesenchymal transition. Mapping mutations and copy number events distinguished tumor populations from normal and transitional cells, including acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. Pathology-assisted deconvolution of spatial transcriptomic data identified tumor and transitional subpopulations with distinct histological features. We showed coordinated expression of TIGIT in exhausted and regulatory T cells and Nectin in tumor cells. Chemo-resistant samples contain a threefold enrichment of inflammatory cancer-associated fibroblasts that upregulate metallothioneins. Our study reveals a deeper understanding of the intricate substructure of pancreatic ductal adenocarcinoma tumors that could help improve therapy for patients with this disease.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Transformação Celular Neoplásica/genética , Humanos , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/genética , Neoplasias PancreáticasRESUMO
Progression from myelodysplastic syndromes (MDS) to secondary acute myeloid leukemia (AML) is associated with the acquisition and expansion of subclones. Our understanding of subclone evolution during progression, including the frequency and preferred order of gene mutation acquisition, remains incomplete. Sequencing of 43 paired MDS and secondary AML samples identified at least one signaling gene mutation in 44% of MDS and 60% of secondary AML samples, often below the level of standard sequencing detection. In addition, 19% of MDS and 47% of secondary AML patients harbored more than one signaling gene mutation, almost always in separate, coexisting subclones. Signaling gene mutations demonstrated diverse patterns of clonal evolution during disease progression, including acquisition, expansion, persistence, and loss of mutations, with multiple patterns often coexisting in the same patient. Multivariate analysis revealed that MDS patients who had a signaling gene mutation had a higher risk of AML progression, potentially providing a biomarker for progression. SIGNIFICANCE: Subclone expansion is a hallmark of progression from MDS to secondary AML. Subclonal signaling gene mutations are common at MDS (often at low levels), show complex and convergent patterns of clonal evolution, and are associated with future progression to secondary AML. See related article by Guess et al., p. 316 (33). See related commentary by Romine and van Galen, p. 270. This article is highlighted in the In This Issue feature, p. 265.
Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Segunda Neoplasia Primária , Evolução Clonal/genética , Progressão da Doença , Humanos , Leucemia Mieloide Aguda/genética , Mutação/genética , Síndromes Mielodisplásicas/genéticaRESUMO
To better understand clonal and transcriptional adaptations after relapse in patients with acute myeloid leukemia (AML), we collected presentation and relapse samples from six normal karyotype AML cases. We performed enhanced whole-genome sequencing to characterize clonal evolution, and deep-coverage single-cell RNA sequencing on the same samples, which yielded 142,642 high-quality cells for analysis. Identifying expressed mutations in individual cells enabled us to discriminate between normal and AML cells, to identify coordinated changes in the genome and transcriptome, and to identify subclone-specific cell states. We quantified the coevolution of genetic and transcriptional heterogeneity during AML progression, and found that transcriptional changes were significantly correlated with genetic changes. However, transcriptional adaptation sometimes occurred independently, suggesting that clonal evolution does not represent all relevant biological changes. In three cases, we identified cells at diagnosis that likely seeded the relapse. Finally, these data revealed a conserved relapse-enriched leukemic cell state bearing markers of stemness, quiescence, and adhesion. SIGNIFICANCE: These data enabled us to identify a relapse-enriched leukemic cell state with distinct transcriptional properties. Detailed case-by-case analyses elucidated the complex ways in which the AML genome, transcriptome, and immune microenvironment interact to evade chemotherapy. These analyses provide a blueprint for evaluating these factors in larger cohorts.This article is highlighted in the In This Issue feature, p. 1.
Assuntos
Leucemia Mieloide Aguda , Evolução Clonal , Humanos , Cariótipo , Leucemia Mieloide Aguda/diagnóstico , Mutação , Recidiva , Microambiente TumoralRESUMO
Acute myeloid leukemia (AML) patients rarely have long first remissions (LFRs; >5 y) after standard-of-care chemotherapy, unless classified as favorable risk at presentation. Identification of the mechanisms responsible for long vs. more typical, standard remissions may help to define prognostic determinants for chemotherapy responses. Using exome sequencing, RNA-sequencing, and functional immunologic studies, we characterized 28 normal karyotype (NK)-AML patients with >5 y first remissions after chemotherapy (LFRs) and compared them to a well-matched group of 31 NK-AML patients who relapsed within 2 y (standard first remissions [SFRs]). Our combined analyses indicated that genetic-risk profiling at presentation (as defined by European LeukemiaNet [ELN] 2017 criteria) was not sufficient to explain the outcomes of many SFR cases. Single-cell RNA-sequencing studies of 15 AML samples showed that SFR AML cells differentially expressed many genes associated with immune suppression. The bone marrow of SFR cases had significantly fewer CD4+ Th1 cells; these T cells expressed an exhaustion signature and were resistant to activation by T cell receptor stimulation in the presence of autologous AML cells. T cell activation could be restored by removing the AML cells or blocking the inhibitory major histocompatibility complex class II receptor, LAG3. Most LFR cases did not display these features, suggesting that their AML cells were not as immunosuppressive. These findings were confirmed and extended in an independent set of 50 AML cases representing all ELN 2017 risk groups. AML cell-mediated suppression of CD4+ T cell activation at presentation is strongly associated with unfavorable outcomes in AML patients treated with standard chemotherapy.
Assuntos
Tolerância Imunológica/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Adulto , Linfócitos T CD4-Positivos/imunologia , Feminino , Humanos , Tolerância Imunológica/imunologia , Cariótipo , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Prognóstico , Recidiva , Indução de Remissão , Fatores de Risco , Análise de Sequência de RNA/métodos , Células Th1/imunologia , Transcriptoma/genética , Resultado do TratamentoRESUMO
The meninges contain adaptive immune cells that provide immunosurveillance of the central nervous system (CNS). These cells are thought to derive from the systemic circulation. Through single-cell analyses, confocal imaging, bone marrow chimeras, and parabiosis experiments, we show that meningeal B cells derive locally from the calvaria, which harbors a bone marrow niche for hematopoiesis. B cells reach the meninges from the calvaria through specialized vascular connections. This calvarial-meningeal path of B cell development may provide the CNS with a constant supply of B cells educated by CNS antigens. Conversely, we show that a subset of antigen-experienced B cells that populate the meninges in aging mice are blood-borne. These results identify a private source for meningeal B cells, which may help maintain immune privilege within the CNS.
Assuntos
Subpopulações de Linfócitos B/fisiologia , Linfócitos B/fisiologia , Células da Medula Óssea/fisiologia , Sistema Nervoso Central/imunologia , Dura-Máter/citologia , Linfopoese , Meninges/citologia , Meninges/imunologia , Crânio/anatomia & histologia , Envelhecimento , Animais , Subpopulações de Linfócitos B/imunologia , Movimento Celular , Sistema Nervoso Central/fisiologia , Dura-Máter/imunologia , Fibroblastos/fisiologia , Homeostase , Privilégio Imunológico , Camundongos , Plasmócitos/fisiologia , Análise de Célula ÚnicaRESUMO
Multiple myeloma (MM) is characterized by the uncontrolled proliferation of plasma cells. Despite recent treatment advances, it is still incurable as disease progression is not fully understood. To investigate MM and its immune environment, we apply single cell RNA and linked-read whole genome sequencing to profile 29 longitudinal samples at different disease stages from 14 patients. Here, we collect 17,267 plasma cells and 57,719 immune cells, discovering patient-specific plasma cell profiles and immune cell expression changes. Patients with the same genetic alterations tend to have both plasma cells and immune cells clustered together. By integrating bulk genomics and single cell mapping, we track plasma cell subpopulations across disease stages and find three patterns: stability (from precancer to diagnosis), and gain or loss (from diagnosis to relapse). In multiple patients, we detect "B cell-featured" plasma cell subpopulations that cluster closely with B cells, implicating their cell of origin. We validate AP-1 complex differential expression (JUN and FOS) in plasma cell subpopulations using CyTOF-based protein assays, and integrated analysis of single-cell RNA and CyTOF data reveals AP-1 downstream targets (IL6 and IL1B) potentially leading to inflammation regulation. Our work represents a longitudinal investigation for tumor and microenvironment during MM progression and paves the way for expanding treatment options.
Assuntos
Linfócitos B/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Recidiva Local de Neoplasia/genética , Microambiente Tumoral/imunologia , Idoso , Linfócitos B/citologia , Linfócitos B/imunologia , Linhagem da Célula , Evolução Clonal/genética , Estudos de Coortes , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Haplótipos , Humanos , Interleucina-1beta/sangue , Interleucina-6/sangue , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Família Multigênica , Mieloma Múltiplo/sangue , Mieloma Múltiplo/patologia , Mutação , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/imunologia , Proteínas Proto-Oncogênicas c-fos/sangue , Proteínas Proto-Oncogênicas c-jun/sangue , RNA-Seq , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Análise de Célula ÚnicaRESUMO
BACKGROUND: Rapid, reliable, and widespread testing is required to curtail the ongoing COVID-19 pandemic. Current gold-standard nucleic acid tests are hampered by supply shortages in critical reagents including nasal swabs, RNA extraction kits, personal protective equipment, instrumentation, and labor. METHODS: To overcome these challenges, we developed a rapid colorimetric assay using reverse-transcription loop-mediated isothermal amplification (RT-LAMP) optimized on human saliva samples without an RNA purification step. We describe the optimization of saliva pretreatment protocols to enable analytically sensitive viral detection by RT-LAMP. We optimized the RT-LAMP reaction conditions and implemented high-throughput unbiased methods for assay interpretation. We tested whether saliva pretreatment could also enable viral detection by conventional reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Finally, we validated these assays on clinical samples. RESULTS: The optimized saliva pretreatment protocol enabled analytically sensitive extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP or RT-qPCR. In simulated samples, the optimized RT-LAMP assay had a limit of detection of 59 (95% confidence interval: 44-104) particle copies per reaction. We highlighted the flexibility of LAMP assay implementation using 3 readouts: naked-eye colorimetry, spectrophotometry, and real-time fluorescence. In a set of 30 clinical saliva samples, colorimetric RT-LAMP and RT-qPCR assays performed directly on pretreated saliva samples without RNA extraction had accuracies greater than 90%. CONCLUSIONS: Rapid and extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP is a simple, sensitive, and cost-effective approach with broad potential to expand diagnostic testing for the virus causing COVID-19.
Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/análise , SARS-CoV-2/isolamento & purificação , Saliva/virologia , COVID-19/epidemiologia , Colorimetria/métodos , Endopeptidase K/química , Humanos , Limite de Detecção , Pandemias , Testes Imediatos , SARS-CoV-2/químicaRESUMO
Tumor heterogeneity and evolution drive treatment resistance in metastatic colorectal cancer (mCRC). Patient-derived xenografts (PDXs) can model mCRC biology; however, their ability to accurately mimic human tumor heterogeneity is unclear. Current genomic studies in mCRC have limited scope and lack matched PDXs. Therefore, the landscape of tumor heterogeneity and its impact on the evolution of metastasis and PDXs remain undefined. We performed whole-genome, deep exome, and targeted validation sequencing of multiple primary regions, matched distant metastases, and PDXs from 11 patients with mCRC. We observed intricate clonal heterogeneity and evolution affecting metastasis dissemination and PDX clonal selection. Metastasis formation followed both monoclonal and polyclonal seeding models. In four cases, metastasis-seeding clones were not identified in any primary region, consistent with a metastasis-seeding-metastasis model. PDXs underrepresented the subclonal heterogeneity of parental tumors. These suggest that single sample tumor sequencing and current PDX models may be insufficient to guide precision medicine.
Assuntos
Evolução Clonal , Neoplasias do Colo , Animais , Evolução Clonal/genética , Neoplasias do Colo/genética , Modelos Animais de Doenças , Exoma/genética , Genômica , Humanos , Metástase Neoplásica , Sequenciamento do ExomaRESUMO
Rapid, reliable, and widespread testing is required to curtail the ongoing COVID-19 pandemic. Current gold standard nucleic acid tests are hampered by supply shortages in critical reagents including nasal swabs, RNA extraction kits, personal protective equipment (PPE), instrumentation, and labor. Here we present an approach to overcome these challenges with the development of a rapid colorimetric assay using reverse-transcription loop-mediated isothermal amplification (RT-LAMP) optimized on human saliva samples without an RNA purification step. We describe our optimizations of the LAMP reaction and saliva pretreatment protocols that enabled rapid and sensitive detection of < 102 viral genomes per reaction in contrived saliva controls. Moreover, our saliva pretreatment protocol enabled sensitive viral detection by conventional quantitative reverse transcription polymerase chain reaction (qRT-PCR) without RNA extraction. We validated the high performance of these assays on clinical samples and demonstrate a promising approach to overcome the current bottlenecks limiting widespread testing.
RESUMO
Virtually all tumors are genetically heterogeneous, containing mutationally-defined subclonal cell populations that often have distinct phenotypes. Single-cell RNA-sequencing has revealed that a variety of tumors are also transcriptionally heterogeneous, but the relationship between expression heterogeneity and subclonal architecture is unclear. Here, we address this question in the context of Acute Myeloid Leukemia (AML) by integrating whole genome sequencing with single-cell RNA-sequencing (using the 10x Genomics Chromium Single Cell 5' Gene Expression workflow). Applying this approach to five cryopreserved AML samples, we identify hundreds to thousands of cells containing tumor-specific mutations in each case, and use the results to distinguish AML cells (including normal-karyotype AML cells) from normal cells, identify expression signatures associated with subclonal mutations, and find cell surface markers that could be used to purify subclones for further study. This integrative approach for connecting genotype to phenotype is broadly applicable to any sample that is phenotypically and genetically heterogeneous.