Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 3920, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850672

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease involving motor neuron death, paralysis and, ultimately, respiratory failure. Motor neuron dysfunction leads to target skeletal muscle atrophy involving dysregulation of downstream cell survival, growth and metabolic signaling. Decreased Akt activity is linked to muscle atrophy in ALS and is associated with increased atrophy gene expression. Unfortunately, the regulating mechanism of Akt activity in atrophic muscle remains unclear. Recent research indicates a role of carboxyl-terminal modulator protein (CTMP) in Akt-signaling related neurologic dysfunction and skeletal muscle metabolism. CTMP is known to bind and reduce Akt phosphorylation and activation. We hypothesized that CTMP expression might progressively increase in ALS skeletal muscle as the disease progresses, downregulating Akt activity. We found that CTMP protein expression significantly increased in hindlimb skeletal muscle in the mSOD1G93A mouse model of ALS in late stages of the disease (P < 0.05), which negatively correlated with Akt phosphorylation over this period (R2 = -0.77). Co-immunoprecipitation of Akt revealed CTMP binding in pre-symptomatic and end-stage skeletal muscle, suggesting a possible direct role in reduced Akt signaling during disease progression. Inflammatory TNFα and downstream cellular degradation process markers for autophagy, lysosome production, and atrophy significantly increased in a pattern corresponding to increased CTMP expression and reduced Akt phosphorylation. In an in vitro model of skeletal muscle atrophy, differentiated C2C12 cells exhibited reduced Akt activity and decreased FOXO1 phosphorylation, a process known to promote transcription of atrophy genes in skeletal muscle. These results corresponded with  increased  Atrogin-1 expression  compared to healthy control cells  (P < 0.05). Transfection with CTMP siRNA significantly increased Akt phosphorylation in atrophic C2C12 cells, corresponding to significantly decreased CTMP expression. In conclusion, this is the first study to provide evidence for a link between elevated CTMP expression, downregulated Akt phosphorylation and muscle atrophy in ALS and clearly demonstrates a direct influence of CTMP on Akt phosphorylation in an in vitro muscle cell atrophy model.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Transporte/metabolismo , Atrofia Muscular/metabolismo , Palmitoil-CoA Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Linhagem Celular , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Técnicas In Vitro , Camundongos , Camundongos Mutantes , Modelos Biológicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Palmitoil-CoA Hidrolase/antagonistas & inibidores , Palmitoil-CoA Hidrolase/genética , Fosforilação , RNA Interferente Pequeno/genética , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
2.
J Neurotrauma ; 36(12): 1974-1984, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30489213

RESUMO

Spinal cord injury (SCI) afflicts hundreds of thousands of Americans, and most SCI (∼80%) occurs in males. In experimental animal models, however, many studies used females. Funding agencies like the National Institutes of Health recommend that new proposed studies should include both genders due to variations in gender response to injuries, diseases, and treatments. However, cost and considerations for some animal models, such as SCI, affect investigators in adapting to this recommendation. Research has increased comparing gender effects in various disease and injury models, including SCI. However, most studies use weight-matched animals, which poses issues in comparing results and outcomes. The present study compared histologic and functional outcomes between age-matched male and female Sprague-Dawley rats in a moderate thoracic contusion SCI model. Cresyl violet and eosin staining showed no significant differences in lesion volume between genders after 9 weeks post-SCI (p > 0.05). Luxol fast blue-stained spared myelin was similar between genders, although slightly greater (∼6%) in spared myelin, compared with cord volume (p = 0.044). Glial reactivity and macrophage labeling in the lesion area was comparable between genders, as well. Basso, Beattie, Bresnahan (BBB) functional scores were not significantly different between genders, and Hargreaves thermal hyperalgesia and Gridwalk sensorimotor analyses also were similar between genders, compared with uninjured gender controls. Analysis of covariance showed weight did not influence functional recovery as assessed through BBB (p = 0.65) or Gridwalk assessment (p = 0.63) in this study. In conclusion, our findings suggest age-matched male and female rats recover similarly in a common clinically relevant SCI model.


Assuntos
Contusões/fisiopatologia , Atividade Motora/fisiologia , Recuperação de Função Fisiológica/fisiologia , Caracteres Sexuais , Traumatismos da Medula Espinal/fisiopatologia , Fatores Etários , Animais , Peso Corporal/fisiologia , Contusões/patologia , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia , Vértebras Torácicas/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA