RESUMO
RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.
Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Transtorno da Conduta/genética , Feminino , Genes Ligados ao Cromossomo X , Células HEK293 , Humanos , Recém-Nascido , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Camundongos , Pessoa de Meia-Idade , Mutação , Linhagem , Fatores de Transcrição/genética , Ubiquitinação , Inativação do Cromossomo X , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
We describe a patient with a de novo balanced translocation 46,XY,t(9; 13)(q31.2; q22.1) and autism spectrum disorder, intellectual disability, a metopic craniosynostosis, a corpus callosum dysgenesis and dysmorphic facial features, most notably ptosis. Breakpoint mapping was performed by means of targeted locus amplification (TLA) and sequencing, because conventional breakpoint mapping by means of fluorescent in situ hybridization and long-range PCR was hampered by a complex submicroscopic rearrangement. The translocation breakpoints directly affected the genes KLF12 (chromosome 13) and ZNF462 (chromosome 9). The latter gene was disrupted by multiple breakpoints, resulting in the loss of three fragments and a rearrangement of the remaining fragments. Therefore, haploinsufficiency of ZNF462 was assumed. Loss-of-function variants in ZNF462 have recently been published by Weiss et al. (2017) in a series of eight patients from six independent families delineating the ZNF462-associated phenotype. The latter closely matches with the clinical features of the current translocation patient. Besides, no direct evidence for an association of KLF12 to the phenotypic features was found. Therefore, we conclude that the phenotype of the current patient is mainly caused by the disruption of ZNF462. We present clinical data from birth to adulthood and data on the cognitive and behavioral profile of the current patient which may add to a more precise counseling and surveillance of development in young children with ZNF462 mutations. In addition, the current case illustrates that TLA is an efficient method for determining complex chromosomal breakpoints.
Assuntos
Anormalidades Múltiplas/genética , Transtorno do Espectro Autista/genética , Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Adulto , Anormalidades Craniofaciais/genética , Deformidades do Pé/genética , Deformidades da Mão/genética , Haploinsuficiência , Humanos , Masculino , Translocação Genética , Adulto JovemRESUMO
The clinical diagnosis of Lujan-Fryns syndrome (LFS) comprises X-linked intellectual disability (XLID) with marfanoid habitus, distinct combination of minor facial anomalies and nasal speech. However the definition of syndrome was significantly broadened since the original report and implies ID with marfanoid habitus. Mutations of three genes (MED12, UPF3B, and ZDHHC9) have been reported in "broadly defined" LFS. We examined these genes in 28 individuals with a tentative clinical diagnosis of LFS but we did not identify any causative mutation. By molecular karyotyping we detected other disorders, i.e., Phelan-McDermid syndrome and 16p11.2 microduplication, each in one patient. One affected individual was carrier of a different recurrent duplication on 16p11.2 that has been reported several times to the DECIPHER and ISCA databases in individuals with autism, intellectual disability (ID), and developmental delay. It may represent a new duplication syndrome. We also identified previously unreported de novo duplication on chromosome 12p13.31 which we considered to be disease-causing. X-exome sequencing of four individuals revealed private or non-recurrent mutations in NKAP and LAS1L in one patient each. While LFS is defined as a form of XLID, there seem to be various conditions that have rather similar phenotypes. Therefore, the combination of ID and marfanoid habitus in a male patient is not sufficient for the diagnosis of LFS. We suggest that the diagnosis of LFS in patients with ID and marfanoid habitus should be made only in presence of specific facial features, nasal speech and obvious X-linked segregation of the disorder or an unambiguously pathogenic mutation in the MED12.
Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Craniofaciais/diagnóstico , Genes Ligados ao Cromossomo X/genética , Deficiência Intelectual/diagnóstico , Síndrome de Marfan/diagnóstico , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Mutação/genética , Anormalidades Múltiplas/genética , Aciltransferases/genética , Anormalidades Craniofaciais/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/genética , Masculino , Síndrome de Marfan/genética , Complexo Mediador/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Linhagem , Proteínas de Ligação a RNA/genéticaAssuntos
Nanismo/genética , Face/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X/genética , Genitália Masculina/anormalidades , Deformidades Congênitas da Mão/genética , Cardiopatias Congênitas/genética , Nanismo/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Testes Genéticos , Fatores de Troca do Nucleotídeo Guanina/genética , Deformidades Congênitas da Mão/diagnóstico , Cardiopatias Congênitas/diagnóstico , Humanos , Masculino , Polimorfismo Genético , Sensibilidade e EspecificidadeRESUMO
Genomic duplications of varying lengths at Xq26-q27 involving SOX3 have been described in families with X-linked hypopituitarism. Using array-CGH we detected a 1.1 Mb microduplication at Xq27 in a large family with three males suffering from X-linked hypopituitarism. The duplication was mapped from 138.7 to 139.8 Mb, harboring only two annotated genes, SOX3 and ATP11C, and was shown to be a direct tandem copy number gain. Unexpectedly, the microduplication did not fully segregate with the disease in this family suggesting that SOX3 duplications have variable penetrance for X-linked hypopituitarism. In the same family, a female fetus presenting with a neural tube defect was also shown to carry the SOX3 copy number gain. Since we also demonstrated increased SOX3 mRNA levels in amnion cells derived from an unrelated t(X;22)(q27;q11) female fetus with spina bifida, we propose that increased levels of SOX3 could be a risk factor for neural tube defects.
Assuntos
Dosagem de Genes , Genes Ligados ao Cromossomo X , Hipopituitarismo/genética , Defeitos do Tubo Neural/genética , Fatores de Transcrição SOXB1/genética , Adolescente , Adulto , Duplicação Cromossômica , Mapeamento Cromossômico , Segregação de Cromossomos , Cromossomos Humanos X , Hibridização Genômica Comparativa , Feminino , Genótipo , Humanos , Masculino , Repetições de Microssatélites/genética , Linhagem , RNA Mensageiro/genética , Fatores de Risco , Adulto JovemRESUMO
PURPOSE: To evaluate the clinical utility of chromosomal microarrays for prenatal diagnosis by a prospective study of fetuses with abnormalities detected on ultrasound. METHODS: Patients referred for prenatal diagnosis due to ultrasound anomalies underwent analysis by array comparative genomic hybridization as the first-tier diagnostic test. RESULTS: A total of 383 prenatal samples underwent analysis by array comparative genomic hybridization. Array analysis revealed causal imbalances in a total of 9.6% of patients (n = 37). Submicroscopic copy-number variations were detected in 2.6% of patients (n = 10/37), and arrays added valuable information over conventional karyotyping in 3.9% of patients (n = 15/37). We highlight a novel advantage of arrays; a 500-kb paternal insertional translocation is the likely driver of a de novo unbalanced translocation, thus improving recurrence risk calculation in this family. Variants of uncertain significance were revealed in 1.6% of patients (n = 6/383). CONCLUSION: We demonstrate the added value of chromosomal microarrays for prenatal diagnosis in the presence of ultrasound anomalies. We advocate reporting back only copy-number variations with known pathogenic significance. Although this approach might be considered opposite to the ideal of full reproductive autonomy of the parents, we argue why providing all information to parents may result in a false sense of autonomy.
Assuntos
Anormalidades Múltiplas/genética , Aberrações Cromossômicas , Doenças Fetais/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Diagnóstico Pré-Natal/métodos , Anormalidades Múltiplas/diagnóstico por imagem , Amostra da Vilosidade Coriônica , Cromossomos Humanos , Hibridização Genômica Comparativa/métodos , Variações do Número de Cópias de DNA , Feminino , Doenças Fetais/diagnóstico por imagem , Humanos , Cariotipagem , Masculino , Mosaicismo , Gravidez , Estudos Prospectivos , Fatores de Risco , Ultrassonografia Pré-NatalRESUMO
Loss-of-function mutations in several different neuronal pathways have been related to intellectual disability (ID). Such mutations often are found on the X chromosome in males since they result in functional null alleles. So far, microdeletions at Xq24 reported in males always have been associated with a syndromic form of ID due to the loss of UBE2A. Here, we report on overlapping microdeletions at Xq24 that do not include UBE2A or affect its expression, in patients with non-syndromic ID plus some additional features from three unrelated families. The smallest region of overlap, confirmed by junction sequencing, harbors two members of the mitochondrial solute carrier family 25, SLC25A5 and SLC25A43. However, identification of an intragenic microdeletion including SLC25A43 but not SLC25A5 in a healthy boy excluded a role for SLC25A43 in cognition. Therefore, our findings point to SLC25A5 as a novel gene for non-syndromic ID. This highly conserved gene is expressed ubiquitously with high levels in cortex and hippocampus, and a presumed role in mitochondrial exchange of ADP/ATP. Our data indicate that SLC25A5 is involved in memory formation or establishment, which could add mitochondrial processes to the wide array of pathways that regulate normal cognitive functions.
Assuntos
Translocador 2 do Nucleotídeo Adenina/metabolismo , Deleção Cromossômica , Cromossomos Humanos X/genética , Deficiência Intelectual/genética , Mitocôndrias/metabolismo , Translocador 2 do Nucleotídeo Adenina/genética , Elementos Alu , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Mitocôndrias/genética , Dados de Sequência Molecular , Linhagem , Inativação do Cromossomo XRESUMO
BACKGROUND: Low birth weight is associated with an increased adult metabolic disease risk. It is widely discussed that poor intra-uterine conditions could induce long-lasting epigenetic modifications, leading to systemic changes in regulation of metabolic genes. To address this, we acquire genome-wide DNA methylation profiles from saliva DNA in a unique cohort of 17 monozygotic monochorionic female twins very discordant for birth weight. We examine if adverse prenatal growth conditions experienced by the smaller co-twins lead to long-lasting DNA methylation changes. RESULTS: Overall, co-twins show very similar genome-wide DNA methylation profiles. Since observed differences are almost exclusively caused by variable cellular composition, an original marker-based adjustment strategy was developed to eliminate such variation at affected CpGs. Among adjusted and unchanged CpGs 3,153 are differentially methylated between the heavy and light co-twins at nominal significance, of which 45 show sensible absolute mean ß-value differences. Deep bisulfite sequencing of eight such loci reveals that differences remain in the range of technical variation, arguing against a reproducible biological effect. Analysis of methylation in repetitive elements using methylation-dependent primer extension assays also indicates no significant intra-pair differences. CONCLUSIONS: Severe intra-uterine growth differences observed within these monozygotic twins are not associated with long-lasting DNA methylation differences in cells composing saliva, detectable with up-to-date technologies. Additionally, our results indicate that uneven cell type composition can lead to spurious results and should be addressed in epigenomic studies.
Assuntos
Peso ao Nascer , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Gêmeos Monozigóticos/genética , Adulto , Metilação de DNA , Feminino , Genoma Humano , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Saliva/citologia , Análise de Sequência de DNA , Adulto JovemRESUMO
BACKGROUND: Thoracic aortic aneurysm/dissection (TAAD) is a common phenotype that may occur as an isolated manifestation or within the constellation of a defined syndrome. In contrast to syndromic TAAD, the elucidation of the genetic basis of isolated TAAD has only recently started. To date, defects have been found in genes encoding extracellular matrix proteins (fibrillin-1, FBN1; collagen type III alpha 1, COL3A1), proteins involved in transforming growth factor beta (TGFß) signaling (TGFß receptor 1 and 2, TGFBR1/2; and SMAD3) or proteins that build up the contractile apparatus of aortic smooth muscle cells (myosin heavy chain 11, MYH11; smooth muscle actin alpha 2, ACTA2; and MYLK). METHODS AND RESULT: In 110 non-syndromic TAAD patients that previously tested negative for FBN1 or TGFBR1/2 mutations, we identified 7 ACTA2 mutations in a cohort of 43 familial TAAD patients, including 2 premature truncating mutations. Sequencing of MYH11 revealed an in frame splice-site alteration in one out of two probands with TAA(D) associated with PDA but none in the series of 22 probands from the cohort of 110 patients with non-syndromic TAAD. Interestingly, immunohistochemical staining of aortic biopsies of a patient and a family member with MYH11 and patients with ACTA2 missense mutations showed upregulation of the TGFß signaling pathway. CONCLUSIONS: MYH11 mutations are rare and typically identified in patients with TAAD associated with PDA. ACTA2 mutations were identified in 16% of a cohort presenting familial TAAD. Different molecular defects in TAAD may account for a different pathogenic mechanism of enhanced TGFß signaling.
Assuntos
Actinas/genética , Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/genética , Mutação/genética , Cadeias Pesadas de Miosina/genética , Fator de Crescimento Transformador beta/genética , Actinas/química , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Dissecção Aórtica/diagnóstico , Aneurisma da Aorta Torácica/diagnóstico , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cadeias Pesadas de Miosina/química , Linhagem , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Regulação para Cima/genéticaRESUMO
OBJECTIVE: Our knowledge about miscarriages mainly concerns pregnancies of at least 8 weeks' gestation. Information about the morphology and the genetic determinants of early aborted embryos remains limited. In addition, it is known that aneuploidies account for less than half of recurrent spontaneous abortions. We hypothesized that (recurrent) early pregnancy losses might have other genetic causes. METHOD: Products of conception from 51 couples with at least one previous miscarriage were collected by hystero-embryoscopy. The extracted DNA was analyzed by low resolution array comparative genomic hybridization and high resolution single nucleotide polymorphism arrays to detect aneuploidies, polyploidies, submicroscopic copy number variants or copy neutral loss of heterozygosity. RESULTS: Chromosomal aberrations were identified in 65.6% (21/32) of miscarriages and in 89% (8/9) of anembryonic cases. Interestingly, 4/11 chromosomally euploid embryos contained regions of loss of heterozygosity >5 Mb, suggesting the miscarriages might be due to an underlying lethal recessive disease. CONCLUSION: Hystero-embryoscopic biopsy followed by array comparative genomic hybridization is a valuable diagnostic tool for early and recurrent miscarriages. Genome-wide high resolution single nucleotide polymorphism microarray analysis of a larger group of miscarriages could provide more insight into the genetic causes of recurrent spontaneous abortion.
Assuntos
Aborto Habitual/genética , Aborto Habitual/patologia , Fetoscopia , Idade Gestacional , Histeroscopia , Adulto , Biópsia , Aberrações Cromossômicas , Hibridização Genômica Comparativa , Feminino , Humanos , Perda de Heterozigosidade , Masculino , Polimorfismo de Nucleotídeo Único , GravidezRESUMO
Structural copy number variation (CNV) is a frequent cause of human variation and disease. Evidence is mounting that somatic acquired CNVs are prevalent, with mosaicisms of large segmental CNVs in blood found in up to one percent of both the healthy and patient populations. It is generally accepted that such constitutional mosaicisms are derived from postzygotic somatic mutations. However, few studies have tested this assumption. Here we determined the origin of CNVs which coexist with a normal cell line in nine individuals. We show that in 2/9 the CNV originated during meiosis. The existence of two cell lines with 46 chromosomes thus resulted from two parallel trisomy rescue events during postzygotic mitoses.
RESUMO
It is generally accepted that the facial phenotype of Wolf-Hirschhorn syndrome is caused by deletions of either Wolf-Hirschhorn critical regions 1 or 2 (WHSCR 1-2). Here, we identify a 432 kb deletion located 600 kb proximal to both WHSCR1-2 in a patient with a WHS facial phenotype. Seven genes are underlying this deletion region including FAM193a, ADD1, NOP14, GRK4, MFSD10, SH3BP2, TNIP2. The clinical diagnosis of WHS facial phenotype was confirmed by 3D facial analysis using dense surface modeling. Our results suggest that the WHSCR1-2 flanking sequence contributes directly or indirectly to the severity of WHS. Sequencing the Wolf-Hirschhorn syndrome candidate 1 and 2 genes did not reveal any mutations. Long range position effects of the deletion that could influence gene expression within the WHSCR were excluded in EBV cell lines derived from patient lymphoblasts. We hypothesize that either (1) this locus harbors regulatory sequences which affect gene expression in the WHSCR1-2 in a defined temporal and spatial developmental window or (2) that this locus is additive to deletions of WHSCR1-2 increasing the phenotypic expression.
Assuntos
Deleção de Sequência , Síndrome de Wolf-Hirschhorn/genética , Anormalidades Múltiplas/genética , Células Cultivadas , Face/anormalidades , Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Humanos , Proteínas Repressoras/genética , Fatores de Elongação da Transcrição/genéticaRESUMO
Brain malformations are individually rare but collectively common causes of developmental disabilities. Many forms of malformation occur sporadically and are associated with reduced reproductive fitness, pointing to a causative role for de novo mutations. Here, we report a study of Baraitser-Winter syndrome, a well-defined disorder characterized by distinct craniofacial features, ocular colobomata and neuronal migration defect. Using whole-exome sequencing of three proband-parent trios, we identified de novo missense changes in the cytoplasmic actin-encoding genes ACTB and ACTG1 in one and two probands, respectively. Sequencing of both genes in 15 additional affected individuals identified disease-causing mutations in all probands, including two recurrent de novo alterations (ACTB, encoding p.Arg196His, and ACTG1, encoding p.Ser155Phe). Our results confirm that trio-based exome sequencing is a powerful approach to discover genes causing sporadic developmental disorders, emphasize the overlapping roles of cytoplasmic actin proteins in development and suggest that Baraitser-Winter syndrome is the predominant phenotype associated with mutation of these two genes.
Assuntos
Anormalidades Múltiplas/genética , Actinas/genética , Encéfalo/anormalidades , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Criança , Coloboma/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Malformações do Sistema Nervoso/genética , Fator de Transcrição PAX9/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência , SíndromeRESUMO
Nicolaides-Baraitser syndrome (NBS) is characterized by sparse hair, distinctive facial morphology, distal-limb anomalies and intellectual disability. We sequenced the exomes of ten individuals with NBS and identified heterozygous variants in SMARCA2 in eight of them. Extended molecular screening identified nonsynonymous SMARCA2 mutations in 36 of 44 individuals with NBS; these mutations were confirmed to be de novo when parental samples were available. SMARCA2 encodes the core catalytic unit of the SWI/SNF ATP-dependent chromatin remodeling complex that is involved in the regulation of gene transcription. The mutations cluster within sequences that encode ultra-conserved motifs in the catalytic ATPase region of the protein. These alterations likely do not impair SWI/SNF complex assembly but may be associated with disrupted ATPase activity. The identification of SMARCA2 mutations in humans provides insight into the function of the Snf2 helicase family.
Assuntos
Proteínas Cromossômicas não Histona/genética , Deformidades Congênitas do Pé/genética , Hipotricose/genética , Deficiência Intelectual/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Fácies , Genes Reguladores , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica , Adulto JovemRESUMO
BACKGROUND: Germline mutations in the CHRNG gene that encodes the γ subunit of the embryonal acetylcholine receptor may cause the non-lethal Escobar variant (EVMPS) or the lethal form (LMPS) of multiple pterygium syndrome (MPS). In addition CHRNG mutations and mutations in other components of the embryonal acetylcholine receptor may present with fetal akinesia deformation sequence (FADS) without pterygia. METHODS: In order to elucidate further the role of CHRNG mutations in MPS/FADS, this study evaluated the results of CHRNG mutation analysis in 100 families with a clinical diagnosis of MPS/FADS. RESULTS: CHRNG mutations were identified in 11/41 (27%) of families with EVMPS and 5/59 (8%) with LMPS/FADS. Most patients with a detectable CHRNG mutation (21 of 24 (87.5%)) had pterygia but no CHRNG mutations were detected in the presence of central nervous system anomalies. DISCUSSION: The mutation spectrum was similar in EVMPS and LMPS/FADS kindreds and EVMPS and LMPS phenotypes were observed in different families with the same CHRNG mutation. Despite this intrafamilial variability, it is estimated that there is a 95% chance that a subsequent sibling will have the same MPS phenotype (EVMPS or LMPS) as the proband (though concordance is less for more distant relatives). Based on these findings, a molecular genetic diagnostic pathway for the investigation of MPS/FADS is proposed.
Assuntos
Anormalidades Múltiplas/genética , Hipertermia Maligna/genética , Pterígio/genética , Receptores Nicotínicos/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/mortalidade , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Retardo do Crescimento Fetal/genética , Estudos de Associação Genética , Genótipo , Humanos , Lactente , Recém-Nascido , Hipertermia Maligna/diagnóstico por imagem , Hipertermia Maligna/mortalidade , Mutação , Gravidez , Pterígio/diagnóstico por imagem , Pterígio/mortalidade , Anormalidades da Pele , Ultrassonografia Pré-NatalRESUMO
In several laboratories, genome-wide array analysis has been implemented as the first tier diagnostic test for the identification of copy number changes in patients with mental retardation and/or congenital anomalies. The identification of a pathogenic copy number variant (CNV) is not only important to make a proper diagnosis but also to enable the accurate estimation of the recurrence risk to family members. Upon the identification of a de novo interstitial loss or gain, the risk recurrence is considered very low. However, this risk is 50% if one of the parents is carrier of a balanced insertional translocation (IT). The apparently de novo imbalance in a patient is then the consequence of the unbalanced transmission of a derivative chromosome involved in an IT. To determine the frequency with which insertional balanced translocations would be the origin of submicroscopic imbalances, we investigated the potential presence of an IT in a consecutive series of 477 interstitial CNVs, in which the parental origin has been tested by FISH, among 14,293 patients with developmental abnormalities referred for array. We demonstrate that ITs underlie ~2.1% of the apparently de novo, interstitial CNVs, indicating that submicroscopic ITs are at least sixfold more frequent than cytogenetically visible ITs. This risk estimate should be taken into account during counseling, and warrant parental and proband FISH testing wherever possible in patients with an apparently de novo, interstitial aberration.
Assuntos
Anormalidades Múltiplas/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Mutagênese Insercional , Translocação Genética , Anormalidades Múltiplas/diagnóstico , Deficiências do Desenvolvimento/diagnóstico , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , LinhagemRESUMO
The aim of this study was to obtain a quantitative definition of Wolf-Hirschhorn syndrome (WHS) through systematic phenotypic analyses in a group of six children with 4p15.32 â pter, 4p15.33 â pter, or 4p16.1 â pter monosomy (considered together as M4p16.1). These results were used for evaluation of the phenotypic effects of a double chromosome imbalance in one child with 4p16.1 â pter monosomy and additional 11q23.3 â qter trisomy. Children with pure M4p16.1 presented with a total of 227 clinical and morphological traits, of which 119 were positive in at least two of them. These traits overlap to a great extent with clinical criteria defining the WHS phenotype. Among the 103 traits identified in the child with unbalanced translocation der(4)t(4;11)(p16.1;q23.3), most clinical and developmental traits (but only 11 morphological) were found to be shared by WHS children with pure M4p16.1 and at least one reported patient with pure 11q trisomy. Forty-six traits of this child corresponded solely to those identified in at least one child with pure M4p16.1. Only five traits of the hybrid phenotype were present in at least one child with pure distal 11q trisomy but in none of the present children with pure M4p16.1. In conclusion, most of the morphological traits of the hybrid phenotype in the child with der(4)t(4;11)(p16.1;q23.3) can be attributed to the M4p16.1, whereas their overlap with those associated with pure distal 11q trisomy is less evident. Phenotype analyses based on the same systematic data acquisition may be useful in understanding the phenotypic effects of different chromosome regions in complex rearrangements. © 2011 Wiley-Liss, Inc.
Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 4/genética , Translocação Genética , Síndrome de Wolf-Hirschhorn/genética , Criança , Pré-Escolar , Bandeamento Cromossômico , Cromossomos Humanos Par 11 , Feminino , Humanos , Lactente , Masculino , Fenótipo , TrissomiaAssuntos
Nanismo/diagnóstico , Nanismo/genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Face/anormalidades , Genitália Masculina/anormalidades , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , MutaçãoRESUMO
Hajdu-Cheney syndrome (HCS) is a rare genetic disorder whose hallmark is acro-osteolysis, shortening of terminal phalanges, and generalized osteoporosis. We assembled a cohort of seven families with the condition and performed whole exome resequencing on a selected set of affected patients. One protein-coding gene, NOTCH2, carried heterozygous truncating variants in all patients and their affected family members. Our results replicate recently published studies of HCS and further support this as the causal gene for the disorder. In total, we identified five novel and one previously reported mutation, all clustered near the carboxyl terminus of the gene, suggesting an allele specific genotype-phenotype effect since other mutations in NOTCH2 have been reported to cause a form of Alagille syndrome. Notch-mediated signaling is known to play a role in bone metabolism. Our results support a potential therapeutic role for Notch pathways in treatment of osteoporosis.