Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36141868

RESUMO

The high salt-alkalinity of bauxite residue (BR) hinders plant growth and revegetation of bauxite residue disposal areas (BRDA), which cause serious potential environmental and ecological risks. Bioneutralization is a promising method for improving the properties of BR and plant colonization. In the present study, a strong saline-alkali tolerant bacteria (ZH-1) was isolated from aged BR and identified as Bacillus sp. The medium of ZH-1 was optimized by orthogonal tests, and ZH-1 could decrease the medium pH from 11.8 to 6.01 (agitated culture) and 6.48 (static culture) by secretion of citric acid, oxalic acid and tartaric acid. With the inoculation of ZH-1, the pH of BR decreased from 11.6 to 8.76, and the water-soluble salt in BR increased by 68.11%. ZH-1 also changed the aggregate size distribution of BR, the mechanical-stable aggregates and water-stable aggregates increased by 18.76% and 10.83%, respectively. At the same time, the stability of the aggregates obviously increased and the destruction rate decreased from 94.37% to 73.46%. In addition, the microbial biomass carbon increased from 425 to 2794 mg/kg with the inoculation of ZH-1. Bacterial community analysis revealed that Clostridia, Bacilli, Gammaproteobacteria, Betaproteobacteria and Alphaproteobacteria were the main classes in the naturalized BR, and the inoculation of ZH-1 increased the diversity of bacteria in the BR. Overall, ZH-1 has great potential for neutralization and improvement the properties of BR and may be greatly beneficial for the revegetation of BRDA.


Assuntos
Álcalis , Óxido de Alumínio , Óxido de Alumínio/química , Bactérias , Carbono , Ácido Oxálico , Plantas , Solo/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA