Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pineal Res ; 75(2): e12895, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392131

RESUMO

Striped stem borer (SSB) is one of the most damaging pests in rice production worldwide. Previously, we preliminarily demonstrated that indica rice Jiazhe LM, an OsT5H (encoding tryptamine-5-hydroxylase) knockout mutant deficient in serotonin, had increased resistance to SSB as compared with its wildtype parent Jiazhe B. However, the full scenario of SSB resistance and the underlying mechanism remain unknown. In this study, we first demonstrated that the OsT5H knockout could generally increase rice resistance to SSB and then proved that the OsT5H knockout does not disrupt the innate defense response of rice plants to SSB infestation, that is, OsT5H knockout mutations neither had significant effect on the transcriptional response of defense genes upon SSB infestation, nor the profile of defense related metabolites and plant hormones, such as lignin, salicylic acid, jasmonic acid, and abscisic acid, nor the activity of reactive oxygen species (ROS) scavenging enzymes and the ROS contents. We then demonstrated that supplementation of serotonin promoted SSB growth and performance in artificial diet feeding experiments. We observed that SSB larvae feeding on Jiazhe B had serotonin 1.72- to 2.30-fold that of those feeding on Jiazhe LM at the whole body level, and more than 3.31 and 1.84 times in the hemolymph and head, respectively. Further studies showed that the expression of genes involved in serotonin biosynthesis and transport was ~88.1% greater in SSB larvae feeding on Jiahze LM than those feeding on Jiazhe B. These observations indicated that SSB increases serotonin synthesis when feeding on serotonin deficient rice but is unable to fully compensate the dietary serotonin deficiency. Put together, the present study strongly suggests that it is the deficiency of serotonin, not the secondary effect of OsT5H knockout on innate defense response confers the SSB resistance in rice, which implies that reducing serotonin level, particularly through inhibition of its inductive synthesis upon SSB damage, could be an efficient strategy for breeding SSB resistant varieties.


Assuntos
Melatonina , Oryza , Animais , Oryza/genética , Oryza/metabolismo , Serotonina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Melatonina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Chem Biol Interact ; 373: 110376, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736874

RESUMO

A wide variety of chemicals are ubiquitous in the environment and thus exposure to these environmental chemicals poses a serious threat to public health. Particularly, environmental factors such as air pollution, heavy metals, and endocrine-disrupting chemicals (EDCs) can lead to diseases in various organ systems. Recent research in environmental epigenetics has demonstrated that N6-methyladenosine (m6A) modification is a key mechanism of environment-related diseases. m6A modification is the most abundant chemical modification in mRNAs, which can specifically regulate gene expression by affecting RNA translation, stability, processing, and nuclear export. In this review, we discussed how environmental chemicals affected m6A modification and mediated environment-related disease occurrence by classifying the diseases of various systems. Here, we conclude that environmental chemicals alter the levels of m6A and its modulators, which then participate in the occurrence of diseases in various systems by regulating gene expression and downstream signaling pathways such as METTL3/m6A ZBTB4/YTHDF2/EZH2, Foxo3a/FTO/m6A ephrin-B2/YTHDF2, and HIF1A/METTL3/m6A BIRC5/IGF2BP3/VEGFA. Considering the significant role of m6A and its modulators in response to environmental chemicals, they are expected to be used as biomarkers of environment-related diseases. Additionally, targeting m6A modulators using small molecule inhibitors and activators is expected to be a new method for the treatment of environment-related diseases. This review systematically and comprehensively clarifies the important role of m6A in diseases caused by environmental chemicals, thus establishing a scientific basis for the treatment of diseases in various organ systems.


Assuntos
Poluentes Ambientais , Transdução de Sinais , Doença , Humanos
3.
Sci Total Environ ; 859(Pt 2): 160432, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36423848

RESUMO

Di(2-ethyl-hexyl) phthalate (DEHP), an environmental endocrine disruptor, can destroy the sperm genomic integrity and impairs spermatogenesis. N6-methyladenosine (m6A) is involved in the cellular effects of DEHP. However, the genotoxic effect of DEHP on spermatocytes and the possible role of m6A in this process remain unclear. This study demonstrated that m6A alleviates DEHP genotoxicity in GC-2 cells. In DEHP-treated mice, DNA double-strand breaks (DSBs) were induced in the testis and spermatocytes. To further explore the molecular mechanism of DEHP genotoxicity on spermatocytes, GC-2 cells were exposed to DEHP. DEHP produced distinct genotoxicity and caused DSBs, which led to the inhibition of DNA synthesis and cell cycle arrest. The DNA damage response (DDR) was initiated to repair the DSBs induced by environmentally relevant levels of DEHP (100 µM and 200 µM). During this process, METTL3 upregulated m6A, which facilitated the DDR via stabilizing the DNA damage repair factors (Rad51 and Xrcc5) mRNA to maintain the pro-survival state. Moreover, Mettl3 knockdown partially inhibited DDR. Interestingly, high-dose DEHP (400 µM and 600 µM) directly induced apoptosis rather than the pro-survival state. Altogether: METTL3-mediated m6A participates in maintaining the pro-survival state by upregulating DDR, providing guidance for mitigating the genotoxicity of environment-related level DEHP exposure.


Assuntos
Dietilexilftalato , Sêmen , Masculino , Camundongos , Animais , Reparo do DNA , Dano ao DNA , Espermatozoides , DNA , Dietilexilftalato/toxicidade
4.
Life Sci ; 309: 121005, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174712

RESUMO

AIMS: Di (2-ethylhexyl) phthalate (DEHP), as an environmental endocrine-disrupting chemical (EDC), can induce male reproductive injury. N6-methyladenosine (m6A) plays a vital role in environmental exposure-induced diseases by regulating gene expression. Therefore, we aim to investigate the role of m6A in DEHP-induced reproductive injury. MAIN METHODS: We established an in vivo model of mice exposed to DEHP to explore the effect of DEHP on reproductive injury and m6A. To further explore the molecular mechanism of DEHP toxicity, we built a model of GC-2 cells exposed to mono-(2-ethylhexyl) phthalate (MEHP) in vitro and further silenced Mettl3 in GC-2cells. Besides, we also conducted MeRIP-qPCR and RIP assays to identify the target genes for m6A modification. KEY FINDINGS: DEHP induced testicular injury and senescence. And telomeres shortening, reduced levels of telomere repeat-binding factor 1 (TRF1), TRF2, protection of telomeres 1 (POT1), and telomerase reverse transcriptase (TERT) can be observed in DEHP-treated testes. MEHP also induced GC-2 cellular senescence and telomere dysfunction. Besides, increased m6A mediated by METTL3 stabilized homeobox containing 1 (Hmbox1) in an m6A-dependent manner in MEHP-exposed GC-2 cells. Mettl3 knockdown led to lower m6A modification and reduced Hmbox1 stability, resulting in further shortening of telomere length. SIGNIFICANCE: our work uncovered that DEHP led to male reproductive injury by telomere dysfunction and m6A modified Hmbox1 contributed to maintaining telomere homeostasis in this process, suggesting that accurate regulation of m6A modification level by drugs has potential value in the treatment of DEHP-induced male reproductive injury.


Assuntos
Dietilexilftalato , Telomerase , Animais , Masculino , Camundongos , Dietilexilftalato/toxicidade , Telomerase/metabolismo , Telômero/genética , Adenosina , Proteínas de Homeodomínio/metabolismo
5.
Mutat Res ; 823: 111757, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34271440

RESUMO

High energy ion beams are effective physical mutagens for mutation induction in plants. Due to their high linear energy transfer (LET) property, they are known to generate single nucleotide variations (SNVs) and insertion/deletions (InDels, <50 bp) as well as structural variations (SVs). However, due to the technical difficulties to identify SVs, studies on ion beam induced SVs by genome sequencing have so far been limited in numbers and inadequate in nature, and knowledge of SVs is scarce with regards to their characteristics. In the present study, we identified and validated SVs in six M4 plants (designated as Ar_50, Ar_100, C_150, C_200, Ne_50 and Ne_100 according to ion beam types and irradiation doses), two each induced by argon (40Ar18+), carbon (12C6+) and neon (20Ne10+) ion beams and performed in depth analyses of their characteristics. In total, 22 SVs were identified and validated, consisting of 11 deletions, 1 duplication, and 4 intra-chromosomal and 6 inter-chromosomal translocations. There were several SVs larger than 1 kbp. The SVs were distributed across the whole genome with an aggregation with SNVs and InDels only in the Ne_50 mutants. An enrichment of a 11-bp wide G-rich DNA motif 'GAAGGWGGRGG' was identified around the SV breakpoints. Three mechanisms might be involved in the SV formation, i.e., the expansion of tandem repeats, transposable element insertion, and non-allelic homologous recombination. Put together, the present study provides a preliminary view of SVs induced by Ar, C and Ne ion beam radiations, and as a pilot study, it contributes to our understanding of how SVs might form after ion beam irradiation in rice.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Genoma de Planta/efeitos da radiação , Íons Pesados , Mutação , Oryza/efeitos da radiação , Radiação Ionizante , Argônio/química , Carbono/química , Elementos de DNA Transponíveis , Heterozigoto , Recombinação Homóloga , Homozigoto , Mutagênese , Neônio/química , Oryza/genética , Projetos Piloto , Sequências de Repetição em Tandem
6.
Toxicol Ind Health ; 36(11): 925-935, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33025838

RESUMO

Our previous studies have shown that continuous exposure to nonylphenol (NP) may cause female reproductive toxicity even at low doses. To better understand this toxic effect, the aim of this study was to investigate the basic characteristics of the disposal kinetics of NP under a chronic exposure scenario to simulate human exposure. Female rats were exposed to NP at three dose levels (50-, 500-, and 10,000 µg kg-1 bw day-1, low, medium, and high dose, respectively) by gavage daily for 17 weeks. Ultrahigh-performance liquid chromatography-tandem mass spectrometry was used to detect NP in rat sera and tissues. The results suggested that a two extravascular compartment model was found to better match the actual serum metabolic behavior of NP. Compared with the high-dose group, the NP absorption in the low-dose group was relatively efficient, the clearance rate was slower, and the residual amount of NP was greater. NP was found mostly in the uterus, adipose and brain tissues and to a lesser degree, in the liver, kidney, and ovary. The results indicated that the extensive organ distribution may cause corresponding toxicity even at relatively low doses.


Assuntos
Fenóis/farmacocinética , Animais , Relação Dose-Resposta a Droga , Feminino , Taxa de Depuração Metabólica , Modelos Biológicos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Toxicocinética
7.
Artigo em Inglês | MEDLINE | ID: mdl-32590215

RESUMO

Our previous studies have shown that uterine fibroids are associated with nonylphenol (NP) exposure, and the changes of carnitines in critical reproductive tissues and body fluids could be used to indicate the female reproductive toxicity caused by NP exposure. In this work, on the basis of further clarifying the correlation between NP exposure level and uterine fibroids, the possibility of the urinary carnitine levels as a potential indicator of uterine fibroids caused by NP exposure was discussed. The urine samples were collected from 84 female volunteers: the control group of 34 healthy women without gynecological disease and 50 uterine fibroids patients, respectively. Methods were respectively established for the determination of NP and eight carnitines in human urine samples by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results showed that the NP level of uterine fibroids group was significantly higher than that of control group (P = 0.002), indicating that NP exposure was an important environmental factor in the occurrence of uterine fibroids. It was further found that in urine samples of the uterine fibroids group, the levels of L-Carnitine (C0), L-Acetyl-carnitine (C2), L-Octanoyl-carnitine (C8), Tetradecanoyl-carnitine (C14), Oleoyl-carnitine (C18:1) and Linoleoyl-carnitine (C18:2) had obviously increased compared with those in the control group (P < 0.001; < 0.001; < 0.001; = 0.003; < 0.001; = 0.010). The concentrations of L-Hexanoyl-carnitine (C6) and L-Palmitoyl-carnitine (C16) in the uterine fibroids group were also higher than those in the control group, although the difference was not statistically significant (P > 0.05). The results suggested that the changes in urinary carnitine levels might be a potential indicator to help to warn of the risk of uterine fibroids caused by NP exposure at the early stage.


Assuntos
Carnitina/urina , Exposição Ambiental , Leiomioma , Fenóis/efeitos adversos , Adulto , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Humanos , Leiomioma/induzido quimicamente , Leiomioma/metabolismo , Limite de Detecção , Modelos Lineares , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
8.
Plants (Basel) ; 9(5)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357388

RESUMO

High-energy ion beams are known to be an effective and unique type of physical mutagen in plants. However, no study on the mutagenic effect of argon (Ar) ion beam radiation on rice has been reported. Genome-wide studies on induced mutations are important to comprehend their characteristics for establishing knowledge-based protocols for mutation induction and breeding, which are still very limited in rice. The present study aimed to investigate the mutagenic effect of three ion beams, i.e., Ar, carbon (C) and neon (Ne) on rice and identify and characterize heritable induced mutations by the whole genome sequencing of six M4 plants. Dose-dependent damage effects were observed on M1 plants, which were developed from ion beam irradiated dry seeds of two indica (LH15, T23) and two japonica (DS551, DS48) rice lines. High frequencies of chlorophyll-deficient seedlings and male-sterile plants were observed in all M2 populations (up to ~30% on M1 plant basis); plants from the seeds of different panicles of a common M1 plant appeared to have different mutations; the whole genome-sequencing demonstrated that there were 236-453 mutations in each of the six M4 plants, including single base substitutions (SBSs) and small insertion/deletions (InDels), with the number of SBSs ~ 4-8 times greater than that of InDels; SBS and InDel mutations were distributed across different genomic regions of all 12 chromosomes, however, only a small number of mutations (0-6) were present in exonic regions that might have an impact on gene function. In summary, the present study demonstrates that Ar, C and Ne ion beam radiation are all effective for mutation induction in rice and has revealed at the genome level the characteristics of the mutations induced by the three ion beams. The findings are of importance to the efficient use of ion beam radiation for the generation and utilization of mutants in rice.

9.
J Vis Exp ; (151)2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31524866

RESUMO

Target Induced Local Lesions In Genomes (TILLING) is a strategy of reverse genetics for the high-throughput screening of induced mutations. However, the TILLING system has less applicability for insertion/deletion (Indel) detection and traditional TILLING needs more complex steps, like CEL I nuclease digestion and gel electrophoresis. To improve the throughput and selection efficiency, and to make the screening of both Indels and single base substitions (SBSs) possible, a new high-resolution melting (HRM)-based TILLING system is developed. Here, we present a detailed HRM-TILLING protocol and show its application in mutation screening. This method can analyze the mutations of PCR amplicons by measuring the denaturation of double-stranded DNA at high temperatures. HRM analysis is directly performed post-PCR without additional processing. Moreover, a simple, safe and fast (SSF) DNA extraction method is integrated with HRM-TILLING to identify both Indels and SBSs. Its simplicity, robustness and high throughput make it potentially useful for mutation scanning in rice and other crops.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Oryza/química , Mutação , Temperatura de Transição
10.
Front Plant Sci ; 10: 1003, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428119

RESUMO

The xantha trait of a yellow leaf rice mutant (HYB), controlled epigenetically by elevated CHG methylation of the genomes uncoupled 4 (OsGUN4) promoter, has reduced chlorophyll content, altered tetrapyrrole biosynthesis, and deregulated transcription of photosynthesis-associated nuclear genes (PhANGs) compared to its wild-type progenitor Longtefu B (LTB). In the present study, we identified a suppressor mutant (CYB) of HYB and characterized its genetic, molecular, and physiological basis of the mutant phenotype. We found that the light-green phenotype of CYB was caused by a suppressor mutation in an unknown gene other than OsGUN4. Compared to HYB, the CHG methylation in the OsGUN4 promoter was reduced, while OsGUN4 transcript and protein abundance levels were increased in CYB. The contents of total chlorophyll and its intermediate metabolites (except protoporphyrin IX) in CYB plants were intermediate between HYB and LTB. The expression levels of 30 genes involved in tetrapyrrole biosynthesis in CYB were all partially reverted to those of LTB, so were the PhANGs. In summary, a suppressor mutation caused the reversion of the xantha trait via reducing CHG methylation in OsGUN4 promoter.

11.
Plant Methods ; 15: 54, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139243

RESUMO

BACKGROUND: The advances of hyperspectral technology provide a new analytic means to decrease the gap of phenomics and genomics caused by the fast development of plant genomics with the next generation sequencing technology. Through hyperspectral technology, it is possible to phenotype the biochemical attributes of rice seeds and use the data for GWAS. RESULTS: The results of correlation analysis indicated that Normalized Difference Spectral Index (NDSI) had high correlation with protein content (PC) with RNDSI 2 = 0.68. Based on GWAS analysis using all the traits, NDSI was able to identify the same SNP loci as rice protein content that was measured by traditional methods. In total, hyperspectral trait NDSI identified all the 43 genes that were identified by biochemical trait PC. NDSI identified 1 extra SNP marker on chromosome 1, which annotated extra 22 genes that were not identified by PC. Kegg annotation results showed that traits NDSI annotated 3 pathways that are exactly the same as PC. The cysteine and methionine metabolic pathway identified by both NDSI and PC was reported important for biosynthesis and metabolism of some of amino acids/protein in rice seeds. CONCLUSION: This study combined hyperspectral technology and GWAS analysis to dissect PC of rice seeds, which was high throughput and proven to be able to apply to GWAS as a new phenotyping tool. It provided a new means to phenotype one of the important biochemical traits for the determination of rice quality that could be used for genetic studies.

12.
Nutrients ; 11(4)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991710

RESUMO

Estimation of the skeleton-protective effects of Ca in Cd-induced bone damage is helpful in the assessment of Cd health risk. The aim of this study was to identify whether Ca supplementation during exposure to different population-relevant doses of Cd can prevent Cd-induced bone damage under the tolerable upper intake level of Ca supplementation. Young female Sprague-Dawley rats were given different population-relevant doses of Cd (1, 5, and 50 mg Cd/kg diet) and Ca supplementation (0.4% Ca supplementation) intervention. Ca supplementation significantly decreased Cd-induced bone microstructure damage, increased bone biomechanics (p < 0.05), serum bone formation marker level (p < 0.05) and expression of osteogenic gene markers exposure to the 5 and 50 mg Cd/kg diets. However, it had no impact on these indicators under the 1 mg Cd/kg diets, with the exception of expression of osteogenic marker genes. Ca supplementation significantly decreased serum Klotho level (p < 0.05), and fibroblast growth factor 23/Klotho-associated gene expression in the kidney and bone showed significant changes. In conclusion, Ca supplementation has a positive effect on bone formation and bone quality against the damaging impact of Cd, especially with exposure to the 5 mg and 50 mg Cd/kg diet, which may be related to its impact on the fibroblast growth factor 23/Klotho axis.


Assuntos
Densidade Óssea/efeitos dos fármacos , Doenças Ósseas/prevenção & controle , Osso e Ossos/efeitos dos fármacos , Cádmio/efeitos adversos , Cálcio/uso terapêutico , Suplementos Nutricionais , Osteogênese/efeitos dos fármacos , Animais , Biomarcadores/sangue , Doenças Ósseas/metabolismo , Cálcio/administração & dosagem , Cálcio/farmacologia , Dieta , Exposição Ambiental/efeitos adversos , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Proteínas Klotho , Ratos Sprague-Dawley
13.
J Zhejiang Univ Sci B ; 19(8): 620-629, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30070085

RESUMO

Targeting Induced Local Lesions IN Genomes (TILLING) is a reverse genetics strategy for the high-throughput screening of induced mutations. γ radiation, which often induces both insertion/deletion (Indel) and point mutations, has been widely used in mutation induction and crop breeding. The present study aimed to develop a simple, high-throughput TILLING system for screening γ ray-induced mutations using high-resolution melting (HRM) analysis. Pooled rice (Oryza sativa) samples mixed at a 1:7 ratio of Indel mutant to wild-type DNA could be distinguished from the wild-type controls by HRM analysis. Thus, an HRM-TILLING system that analyzes pooled samples of four M2 plants is recommended for screening γ ray-induced mutants in rice. For demonstration, a γ ray-mutagenized M2 rice population (n=4560) was screened for mutations in two genes, OsLCT1 and SPDT, using this HRM-TILLING system. Mutations including one single nucleotide substitution (G→A) and one single nucleotide insertion (A) were identified in OsLCT1, and one trinucleotide (TTC) deletion was identified in SPDT. These mutants can be used in rice breeding and genetic studies, and the findings are of importance for the application of γ ray mutagenesis to the breeding of rice and other seed crops.


Assuntos
Mutação INDEL , Mutagênese , Oryza/genética , Produtos Agrícolas/genética , Produtos Agrícolas/efeitos da radiação , Raios gama , Técnicas Genéticas , Genoma de Planta , Homozigoto , Oryza/efeitos da radiação , Melhoramento Vegetal , Reação em Cadeia da Polimerase , Sementes , Análise de Sequência de DNA , Deleção de Sequência
14.
Nat Plants ; 4(6): 338-344, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735983

RESUMO

Rice is one of the world's most important foods, but its production suffers from insect pests, causing losses of billions of dollars, and extensive use of environmentally damaging pesticides for their control1,2. However, the molecular mechanisms of insect resistance remain elusive. Although a few resistance genes for planthopper have been cloned, no rice germplasm is resistant to stem borers. Here, we report that biosynthesis of serotonin, a neurotransmitter in mammals3, is induced by insect infestation in rice, and its suppression confers resistance to planthoppers and stem borers, the two most destructive pests of rice2. Serotonin and salicylic acid derive from chorismate4. In rice, the cytochrome P450 gene CYP71A1 encodes tryptamine 5-hydroxylase, which catalyses conversion of tryptamine to serotonin5. In susceptible wild-type rice, planthopper feeding induces biosynthesis of serotonin and salicylic acid, whereas in mutants with an inactivated CYP71A1 gene, no serotonin is produced, salicylic acid levels are higher and plants are more insect resistant. The addition of serotonin to the resistant rice mutant and other brown planthopper-resistant genotypes results in a loss of insect resistance. Similarly, serotonin supplementation in artificial diet enhances the performance of both insects. These insights demonstrate that regulation of serotonin biosynthesis plays an important role in defence, and may prove valuable for breeding insect-resistant cultivars of rice and other cereal crops.


Assuntos
Oryza/metabolismo , Serotonina/metabolismo , Animais , Regulação da Expressão Gênica de Plantas , Hemípteros , Herbivoria , Mariposas , Oryza/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo
15.
J Zhejiang Univ Sci B ; 17(12): 905-915, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27921396

RESUMO

Mutation breeding is based on the induction of genetic variations; hence knowledge of the frequency and type of induced mutations is of paramount importance for the design and implementation of a mutation breeding program. Although γ ray irradiation has been widely used since the 1960s in the breeding of about 200 economically important plant species, molecular elucidation of its genetic effects has so far been achieved largely by analysis of target genes or genomic regions. In the present study, the whole genomes of six γ-irradiated M2 rice plants were sequenced; a total of 144-188 million high-quality (Q>20) reads were generated for each M2 plant, resulting in genome coverage of >45 times for each plant. Single base substitution (SBS) and short insertion/deletion (Indel) mutations were detected at the average frequency of 7.5×10-6-9.8×10-6 in the six M2 rice plants (SBS being about 4 times more frequent than Indels). Structural and copy number variations, though less frequent than SBS and Indel, were also identified and validated. The mutations were scattered in all genomic regions across 12 rice chromosomes without apparent hotspots. The present study is the first genome-wide single-nucleotide resolution study on the feature and frequency of γ irradiation-induced mutations in a seed propagated crop; the findings are of practical importance for mutation breeding of rice and other crop species.


Assuntos
Raios gama , Mutação , Oryza/genética , Cruzamento , Produtos Agrícolas/genética , Variações do Número de Cópias de DNA , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala
16.
J Zhejiang Univ Sci B ; 16(2): 113-22, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25644466

RESUMO

The cytochrome P450 gene CYP81A6 confers tolerance to bentazon and metsulfuron-methyl, two selective herbicides widely used for weed control in rice and wheat fields. Knockout mutants of CYP81A6 are highly susceptible to both herbicides. The present study aimed to characterize the CYP81A6 expression in rice. Quantitative real-time polymerase chain reaction (PCR) analyses demonstrated that foliar treatment of bentazon (500 mg/L) greatly induced expression of CYP81A6 in both wild-type (Jiazhe B) and its knockout mutant (Jiazhe mB): a 10-fold increase at 9 h before returning to basal levels at 24 h in Jiazhe B, while in the mutant the expression level rose to >20-fold at 12 h and maintained at such high level up to 24 h post exposure. In contrast, metsulfuron-methyl (500 mg/L) treatment did not affect the expression of CYP81A6 in Jiazhe B within 80 h; thereafter the expression peaked at 120 h and returned gradually to basal levels by Day 6. We suggest that a metabolite of metsulfuron-methyl, 1H-2,3-benzothiazin-4-(3H)-one-2,2-dioxide, is likely to be responsible for inducing CYP81A6 expression, rather than the metsulfuron-methyl itself. Use of a promoter-GUS reporter construct (CYP81A6Pro::GUS) demonstrated that CYP81A6 was constitutively expressed throughout the plant, with the highest expression in the upper surfaces of leaves. Subcellular localization studies in rice protoplasts showed that CYP81A6 was localized in the endoplasmic reticulum. These observations advance our understanding of CYP81A6 expression in rice, particularly its response to the two herbicides.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Herbicidas/farmacologia , Oryza/enzimologia , Frações Subcelulares/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Distribuição Tecidual
17.
Theor Appl Genet ; 127(11): 2491-501, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25208645

RESUMO

KEY MESSAGE: A γ-ray-induced xantha trait is epigenetically controlled by the genomes uncoupled 4 gene with enhanced promoter segment methylation and down-regulated expression in rice. For easy testing and to increase varietal purity, a xantha mutation (xnt), which turns plants yellow and makes them visually distinguishable from normal green rice, has been generated and bred into male sterile lines for hybrid rice production. The xnt locus was previously fine mapped to a ~100-kb interval on chromosome 11, but its identity was unknown. In this study, xnt was further narrowed down to a 57-kb fragment carrying eight opening reading frames (ORFs). All eight ORFs had identical genomic sequences and all but ORF2 (g enomes uncoupled 4, OsGUN4) had similar transcript abundance in the xantha mutant Huangyu B (HYB) and its parental variety Longtefu B (LTB). The expression of OsGUN4, however, was significantly reduced in HYB compared with LTB in terms of both transcript abundance (0.2% that of LTB) and expressed protein level (barely detectable in HYB but greater than the heat shock protein reference in LTB). Therefore, OsGUN4 was identified as the candidate gene underlying the xantha trait. The function of OsGUN4 in the xantha phenotype was confirmed by identification and characterization of new allelic OsGUN4 mutations. Comparative bisulfite genomic sequencing of OsGUN4 revealed increased methylation in a promoter region in the mutant, and the correlation between increased methylation and the xantha phenotype was further verified by demethylation treatment. In summary, we have identified an epi-allele of OsGUN4 as the causal gene of the xantha marker trait and revealed that enhanced methylation in its promoter down-regulated its expression in rice.


Assuntos
Epigênese Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Oryza/genética , Proteínas de Plantas/genética , Alelos , Carotenoides/metabolismo , Clorofila/metabolismo , Mapeamento Cromossômico , Metilação de DNA , Análise Mutacional de DNA , DNA de Plantas/genética , Regulação para Baixo , Raios gama , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Fases de Leitura Aberta , Fenótipo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas
18.
Theor Appl Genet ; 114(5): 803-14, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17219209

RESUMO

Phytic acid (PA, myo-inositol 1,2,3,4,5,6-hexakisphosphate), or its salt form, phytate, is commonly regarded as the major anti-nutritional component in cereal and legume grains. Breeding of low phytic acid (lpa) crops has recently been considered as a potential way to increase nutritional quality of crop products. In this study, eight independent lpa rice mutant lines from both indica and japonica subspecies were developed through physical and chemical mutagenesis. Among them, five are non-lethal while the other three are homozygous lethal. None of the lethal lines could produce homozygous lpa plants through seed germination and growth under field conditions, but two of them could be rescued through in vitro culture of mature embryos. The non-lethal lpa mutants had lower PA content ranging from 34 to 64% that of their corresponding parent and four of them had an unchanged total P level. All the lpa mutations were inherited in a single recessive gene model and at least four lpa mutations were identified mutually non-allelic, while the other two remain to be verified. One mutation was mapped on chromosome 2 between microsatellite locus RM3542 and RM482, falling in the same region as the previously mapped lpa1-1 locus did; another lpa mutation was mapped on chromosome 3, tightly linked to RM3199 with a genetic distance of 1.198 cM. The latter mutation was very likely to have happened to the LOC_Os03g52760, a homolog of the maize myo-inositol kinase (EC 2.7.1.64) gene. The present work greatly expands the number of loci that could influence the biosynthesis of PA in rice, making rice an excellent model system for research in this area.


Assuntos
Oryza/genética , Oryza/metabolismo , Ácido Fítico/metabolismo , Alelos , Cruzamento , Mapeamento Cromossômico , DNA de Plantas/genética , Genes de Plantas , Genes Recessivos , Repetições de Microssatélites , Mutação , Oryza/classificação , Fosfatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA