Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1728, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409095

RESUMO

A better understanding of the relative roles of internal climate variability and external contributions, from both natural (solar, volcanic) and anthropogenic greenhouse gas forcing, is important to better project future hydrologic changes. Changes in the evaporative demand play a central role in this context, particularly in tropical areas characterized by high precipitation seasonality, such as the tropical savannah and semi-desertic biomes. Here we present a set of geochemical proxies in speleothems from a well-ventilated cave located in central-eastern Brazil which shows that the evaporative demand is no longer being met by precipitation, leading to a hydrological deficit. A marked change in the hydrologic balance in central-eastern Brazil, caused by a severe warming trend, can be identified, starting in the 1970s. Our findings show that the current aridity has no analog over the last 720 years. A detection and attribution study indicates that this trend is mostly driven by anthropogenic forcing and cannot be explained by natural factors alone. These results reinforce the premise of a severe long-term drought in the subtropics of eastern South America that will likely be further exacerbated in the future given its apparent connection to increased greenhouse gas emissions.

2.
Sci Adv ; 9(21): eade9071, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224261

RESUMO

The 4.1-billion-year-old meteorite Allan Hills 84001 (ALH 84001) may preserve a magnetic record of the extinct martian dynamo. However, previous paleomagnetic studies have reported heterogeneous, nonunidirectional magnetization in the meteorite at submillimeter scales, calling into question whether it records a dynamo field. We use the quantum diamond microscope to analyze igneous Fe-sulfides in ALH 84001 that may carry remanence as old as 4.1 billion years (Ga). We find that individual, 100-µm-scale ferromagnetic mineral assemblages are strongly magnetized in two nearly antipodal directions. This suggests that the meteorite recorded strong fields following impact heating at 4.1 to 3.95 Ga, after which at least one further impact heterogeneously remagnetized the meteorite in a nearly antipodal local field. These observations are most simply explained by a reversing martian dynamo that was active until 3.9 Ga, thereby implying a late cessation for the martian dynamo and potentially documenting reversing behavior in a nonterrestrial planetary dynamo.

3.
Sci Adv ; 9(1): eadd1511, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608136

RESUMO

A potential record of Earth's magnetic field going back 4.2 billion years (Ga) ago is carried by magnetite inclusions in zircon grains from the Jack Hills. This magnetite may be secondary in nature, however, meaning that the magnetic record is much younger than the zircon crystallization age. Here, we use atom probe tomography to show that Pb-bearing nanoclusters in magnetite-bearing Jack Hills zircons formed during two discrete events at 3.4 and <2 Ga. The older population of clusters contains no detectable Fe, whereas roughly half of the younger population of clusters is Fe bearing. This result shows that the Fe required to form secondary magnetite entered the zircon sometime after 3.4 Ga and that remobilization of Pb and Fe during an annealing event occurred more than 1 Ga after deposition of the Jack Hills sediment at 3 Ga. The ability to date Fe mobility linked to secondary magnetite formation provides new possibilities to improve our knowledge of the Archean geodynamo.

5.
Proc Natl Acad Sci U S A ; 119(44): e2210258119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279430

RESUMO

The paleomagnetic record is an archive of Earth's geophysical history, informing reconstructions of ancient plate motions and probing the core via the geodynamo. We report a robust 3.25-billion-year-old (Ga) paleomagnetic pole from the East Pilbara Craton, Western Australia. Together with previous results from the East Pilbara between 3.34 and 3.18 Ga, this pole enables the oldest reconstruction of time-resolved lithospheric motions, documenting 160 My of both latitudinal drift and rotation at rates of at least 0.55°/My. Motions of this style, rate, and duration are difficult to reconcile with true polar wander or stagnant-lid geodynamics, arguing strongly for mobile-lid geodynamics by 3.25 Ga. Additionally, this pole includes the oldest documented geomagnetic reversal, reflecting a stably dipolar, core-generated Archean dynamo.


Assuntos
Fenômenos Geológicos , Austrália Ocidental
6.
Proc Natl Acad Sci U S A ; 119(29): e2202875119, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858328

RESUMO

Obtaining estimates of Earth's magnetic field strength in deep time is complicated by nonideal rock magnetic behavior in many igneous rocks. In this study, we target anorthosite xenoliths that cooled and acquired their magnetization within ca. 1,092 Ma shallowly emplaced diabase intrusions of the North American Midcontinent Rift. In contrast to the diabase which fails to provide reliable paleointensity estimates, the anorthosite xenoliths are unusually high-fidelity recorders yielding high-quality, single-slope paleointensity results that are consistent at specimen and site levels. An average value of ∼83 ZAm2 for the virtual dipole moment from the anorthosite xenoliths, with the highest site-level values up to ∼129 ZAm2, is higher than that of the dipole component of Earth's magnetic field today and rivals the highest values in the paleointensity database. Such high intensities recorded by the anorthosite xenoliths require the existence of a strongly powered geodynamo at the time. Together with previous paleointensity data from other Midcontinent Rift rocks, these results indicate that a dynamo with strong power sources persisted for more than 14 My ca. 1.1 Ga. These data are inconsistent with there being a progressive monotonic decay of Earth's dynamo strength through the Proterozoic Eon and could challenge the hypothesis of a young inner core. The multiple observed paleointensity transitions from weak to strong in the Paleozoic and the Proterozoic present challenges in identifying the onset of inner core nucleation based on paleointensity records alone.

7.
Sci Adv ; 7(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523830

RESUMO

We review recent advances in our understanding of magnetism in the solar nebula and protoplanetary disks (PPDs). We discuss the implications of theory, meteorite measurements, and astronomical observations for planetary formation and nebular evolution. Paleomagnetic measurements indicate the presence of fields of 0.54 ± 0.21 G at ~1 to 3 astronomical units (AU) from the Sun and ≳0.06 G at 3 to 7 AU until >1.22 and >2.51 million years (Ma) after solar system formation, respectively. These intensities are consistent with those predicted to enable typical astronomically observed protostellar accretion rates of ~10-8 M ⊙year-1, suggesting that magnetism played a central role in mass transport in PPDs. Paleomagnetic studies also indicate fields <0.006 G and <0.003 G in the inner and outer solar system by 3.94 and 4.89 Ma, respectively, consistent with the nebular gas having dispersed by this time. This is similar to the observed lifetimes of extrasolar protoplanetary disks.

8.
J Geophys Res Solid Earth ; 126(10): e2021JB022364, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35866100

RESUMO

Our understanding of the past behavior of the geomagnetic field arises from magnetic signals stored in geological materials, e.g., (volcanic) rocks. Bulk rock samples, however, often contain magnetic grains that differ in chemistry, size, and shape; some of them record the Earth's magnetic field well, others are unreliable. The presence of a small amount of adverse behaved magnetic grains in a sample may already obscure important information on the past state of the geomagnetic field. Recently it was shown that it is possible to determine magnetizations of individual grains in a sample by combining X-ray computed tomography and magnetic surface scanning measurements. Here we establish this new Micromagnetic Tomography (MMT) technique and make it suitable for use with different magnetic scanning techniques, and for both synthetic and natural samples. We acquired reliable magnetic directions by selecting subsets of grains in a synthetic sample, and we obtained rock-magnetic information of individual grains in a volcanic sample. This illustrates that MMT opens up entirely new venues of paleomagnetic and rock-magnetic research. MMT's unique ability to determine the magnetization of individual grains in a nondestructive way allows for a systematic analysis of how geological materials record and retain information on the past state of the Earth's magnetic field. Moreover, by interpreting only the contributions of known magnetically well-behaved grains in a sample, MMT has the potential to unlock paleomagnetic information from even the most complex, crucial, or valuable recorders that current methods are unable to recover.

9.
Sci Adv ; 6(17): eaaz8670, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32494654

RESUMO

The mode and rates of tectonic processes and lithospheric growth during the Archean [4.0 to 2.5 billion years (Ga) ago] are subjects of considerable debate. Paleomagnetism may contribute to the discussion by quantifying past plate velocities. We report a paleomagnetic pole for the ~3180 million year (Ma) old Honeyeater Basalt of the East Pilbara Craton, Western Australia, supported by a positive fold test and micromagnetic imaging. Comparison of the 44°±15° Honeyeater Basalt paleolatitude with previously reported paleolatitudes requires that the average latitudinal drift rate of the East Pilbara was ≥2.5 cm/year during the ~170 Ma preceding 3180 Ma ago, a velocity comparable with those of modern plates. This result is the earliest unambiguous evidence yet uncovered for long-range lithospheric motion. Assuming this motion is due primarily to plate motion instead of true polar wander, the result is consistent with uniformitarian or episodic tectonic processes in place by 3.2 Ga ago.

10.
Sci Adv ; 6(15): eaav9634, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32284988

RESUMO

The time of origin of the geodynamo has important implications for the thermal evolution of the planetary interior and the habitability of early Earth. It has been proposed that detrital zircon grains from Jack Hills, Western Australia, provide evidence for an active geodynamo as early as 4.2 billion years (Ga) ago. However, our combined paleomagnetic, geochemical, and mineralogical studies on Jack Hills zircons indicate that most have poor magnetic recording properties and secondary magnetization carriers that postdate the formation of the zircons. Therefore, the existence of the geodynamo before 3.5 Ga ago remains unknown.

11.
Proc Natl Acad Sci U S A ; 116(2): 407-412, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30598434

RESUMO

Zircon crystals from the Jack Hills, Western Australia, are one of the few surviving mineralogical records of Earth's first 500 million years and have been proposed to contain a paleomagnetic record of the Hadean geodynamo. A prerequisite for the preservation of Hadean magnetization is the presence of primary magnetic inclusions within pristine igneous zircon. To date no images of the magnetic recorders within ancient zircon have been presented. Here we use high-resolution transmission electron microscopy to demonstrate that all observed inclusions are secondary features formed via two distinct mechanisms. Magnetite is produced via a pipe-diffusion mechanism whereby iron diffuses into radiation-damaged zircon along the cores of dislocations and is precipitated inside nanopores and also during low-temperature recrystallization of radiation-damaged zircon in the presence of an aqueous fluid. Although these magnetites can be recognized as secondary using transmission electron microscopy, they otherwise occur in regions that are indistinguishable from pristine igneous zircon and carry remanent magnetization that postdates the crystallization age by at least several hundred million years. Without microscopic evidence ruling out secondary magnetite, the paleomagnetic case for a Hadean-Eoarchean geodynamo cannot yet been made.

12.
Earth Planet Sci Lett ; 504: 30-37, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31708587

RESUMO

The background temperature of the protoplanetary disk is a fundamental but poorly constrained parameter that strongly influences a wide range of conditions and processes in the early Solar System, including the widespread process(es) by which chondrules originate. Chondrules, mm-scale objects composed primarily of silicate minerals, were formed in the protoplanetary disk almost entirely during the first four million years of Solar System history but their formation mechanism(s) are poorly understood. Here we present new constraints on the sub-silicate solidus cooling rates of chondrules at <873 K (600°C) using the compositions of sulfide minerals. We show that chondrule cooling rates remained relatively rapid (~100 to 101 K/hr) between 873 and 503 K, which implies a protoplanetary disk background temperature of <503 K (230°C) and is consistent with many models of chondrule formation by shocks in the solar nebula, potentially driven by the formation of Jupiter and/or planetary embryos, as the chondrule formation mechanism. This protoplanetary disk background temperature rules out current sheets and resulting short-circuit instabilities as the chondrule formation mechanism. More detailed modeling of chondrule cooling histories in impacts is required to fully evaluate impacts as a chondrule formation model. These results motivate further theoretical work to understand the expected thermal evolution of chondrules at ≤873 K under a variety of chondrule formation scenarios.

13.
Science ; 355(6325): 623-627, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28183977

RESUMO

A key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (<0.6 microtesla) at 4563.5 ± 0.1 million years ago, ~3.8 million years after solar system formation. This indicates that the solar nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation of chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. The core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation.

14.
Science ; 346(6213): 1089-92, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25394792

RESUMO

Magnetic fields are proposed to have played a critical role in some of the most enigmatic processes of planetary formation by mediating the rapid accretion of disk material onto the central star and the formation of the first solids. However, there have been no experimental constraints on the intensity of these fields. Here we show that dusty olivine-bearing chondrules from the Semarkona meteorite were magnetized in a nebular field of 54 ± 21 microteslas. This intensity supports chondrule formation by nebular shocks or planetesimal collisions rather than by electric currents, the x-wind, or other mechanisms near the Sun. This implies that background magnetic fields in the terrestrial planet-forming region were likely 5 to 54 microteslas, which is sufficient to account for measured rates of mass and angular momentum transport in protoplanetary disks.

15.
Science ; 338(6104): 238-41, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23066077

RESUMO

The asteroid Vesta is the smallest known planetary body that has experienced large-scale igneous differentiation. However, it has been previously uncertain whether Vesta and similarly sized planetesimals formed advecting metallic cores and dynamo magnetic fields. Here we show that remanent magnetization in the eucrite meteorite Allan Hills A81001 formed during cooling on Vesta 3.69 billion years ago in a surface magnetic field of at least 2 microteslas. This field most likely originated from crustal remanence produced by an earlier dynamo, suggesting that Vesta formed an advecting liquid metallic core. Furthermore, the inferred present-day crustal fields can account for the lack of solar wind ion-generated space weathering effects on Vesta.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA