Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2324, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485961

RESUMO

Mixed tin-lead perovskite solar cells have driven a lot of passion for research because of their vital role in all-perovskite tandem solar cells, which hold the potential for achieving higher efficiencies compared to single-junction counterparts. However, the pronounced disparity in crystallization processes between tin-based perovskites and lead-based perovskites, coupled with the easy Sn2+ oxidation, has long been a dominant factor contributing to high defect densities. In this study, we propose a multidimensional strategy to achieve efficient tin-lead perovskite solar cells by employing a functional N-(carboxypheny)guanidine hydrochloride molecule. The tailored N-(carboxypheny)guanidine hydrochloride molecule plays a pivotal role in manipulating the crystallization and grain growth of tin-lead perovskites, while also serving as a preservative to effectively inhibit Sn2+ oxidation, owing to the strong binding between N-(carboxypheny)guanidine hydrochloride and tin (II) iodide and the elevated energy barriers for oxidation. Consequently, single-junction tin-lead cells exhibit a stabilized power conversion efficiency of 23.11% and can maintain 97.45% of their initial value even after 3500 h of shelf storage in an inert atmosphere without encapsulation. We further integrate tin-lead perovskites into two-terminal monolithic all-perovskite tandem cells, delivering a certified efficiency of 27.35%.

2.
Adv Mater ; : e2310080, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38479011

RESUMO

Modifying perovskite surface using various organic ammonium halide cations has proven to be an effective approach for enhancing the overall performance of perovskite solar cells. Nevertheless, the impact of the structural symmetry of these ammonium halide cations on perovskite interface termination has remained uncertain. Here, this work investigates the influence of symmetry on the performance of the devices, using molecules based on symmetrical bis(2-chloroethyl)ammonium cation (B(CE)A+ ) and asymmetrical 2-chloroethylammonium cation (CEA+ ) as interface layers between the perovskite and hole transport layer. These results reveal that the symmetrical B(CE)A+ cations lead to a more homogeneous surface potential and more comprehensive chelation with uncoordinated Pb2+ compared to the asymmetrical cations, resulting in a more favorable energy band alignment and strengthened defect healing. This strategy, leveraging the spatial geometrical symmetry of the interface cations, promotes hole carrier extraction between functional layers and reduces nonradiative recombination on the perovskite surface. Consequently, perovskite solar cells processed with the symmetrical B(CE)A+ cations achieve a power conversion efficiency (PCE) of 25.60% and retain ≈91% of their initial PCE after 500 h of maximum power point operation. This work highlights the significant benefits of utilizing structurally symmetrical cations in promoting the performance and stability of perovskite solar cells.

3.
Exp Mol Med ; 56(3): 630-645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424194

RESUMO

The meniscus is vital for maintaining knee homeostasis and function. Meniscal calcification is one of the earliest radiological indicators of knee osteoarthritis (KOA), and meniscal calcification is associated with alterations in biomechanical properties. Meniscal calcification originates from a biochemical process similar to vascular calcification. Advanced glycation end products (AGEs) and their receptors (RAGEs) reportedly play critical roles in vascular calcification. Herein, we investigated whether targeting AGE-RAGE is a potential treatment for meniscal calcification. In our study, we demonstrated that AGE-RAGE promotes the osteogenesis of meniscal cells and exacerbates meniscal calcification. Mechanistically, AGE-RAGE activates mTOR and simultaneously promotes ATF4 accumulation, thereby facilitating the ATF4-mTOR positive feedback loop that enhances the osteogenic capacity of meniscal cells. In this regard, mTOR inhibits ATF4 degradation by reducing its ubiquitination, while ATF4 activates mTOR by increasing arginine uptake. Our findings substantiate the unique role of AGE-RAGE in the meniscus and reveal the role of the ATF4-mTOR positive feedback loop during the osteogenesis of meniscal cells; these results provide potential therapeutic targets for KOA.


Assuntos
Menisco , Osteoartrite do Joelho , Calcificação Vascular , Humanos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Retroalimentação , Produtos Finais de Glicação Avançada/metabolismo , Menisco/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Serina-Treonina Quinases TOR , Calcificação Vascular/metabolismo
4.
Adv Mater ; 36(1): e2307987, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956304

RESUMO

Wide-bandgap (WBG) perovskite solar cells have attracted considerable interest for their potential applications in tandem solar cells. However, the predominant obstacles impeding their widespread adoption are substantial open-circuit voltage (VOC ) deficit and severe photo-induced halide segregation. To tackle these challenges, a crystal orientation regulation strategy by introducing dodecyl-benzene-sulfonic-acid as an additive in perovskite precursors is proposed. This method significantly promotes the desired crystal orientation, passivates defects, and mitigates photo-induced halide phase segregation in perovskite films, leading to substantially reduced nonradiative recombination, minimized VOC deficits, and enhanced operational stability of the devices. The resulting 1.66 eV bandgap methylamine-free perovskite solar cells achieve a remarkable power conversion efficiency (PCE) of 22.40% (certified at 21.97%), with the smallest VOC deficit recorded at 0.39 V. Furthermore, the fabricated semitransparent WBG devices exhibit a competitive PCE of 20.13%. Consequently, four-terminal tandem cells comprising WBG perovskite top cells and 1.25 eV bandgap perovskite bottom cells showcase an impressive PCE of 28.06% (stabilized 27.92%), demonstrating great potential for efficient multijunction tandem solar cell applications.

5.
Nature ; 624(7990): 69-73, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938775

RESUMO

All-perovskite tandem solar cells hold great promise in surpassing the Shockley-Queisser limit for single-junction solar cells1-3. However, the practical use of these cells is currently hampered by the subpar performance and stability issues associated with mixed tin-lead (Sn-Pb) narrow-bandgap perovskite subcells in all-perovskite tandems4-7. In this study, we focus on the narrow-bandgap subcells and develop an all-in-one doping strategy for them. We introduce aspartate hydrochloride (AspCl) into both the bottom poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) and bulk perovskite layers, followed by another AspCl posttreatment. We show that a single AspCl additive can effectively passivate defects, reduce Sn4+ impurities and shift the Fermi energy level. Additionally, the strong molecular bonding of AspCl-Sn/Pb iodide and AspCl-AspCl can strengthen the structure and thereby improve the stability of Sn-Pb perovskites. Ultimately, the implementation of AspCl doping in Sn-Pb perovskite solar cells yielded power conversion efficiencies of 22.46% for single-junction cells and 27.84% (27.62% stabilized and 27.34% certified) for tandems with 95% retention after being stored in an N2-filled glovebox for 2,000 h. These results suggest that all-in-one AspCl doping is a favourable strategy for enhancing the efficiency and stability of single-junction Sn-Pb perovskite solar cells and their tandems.

6.
Polymers (Basel) ; 15(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37177346

RESUMO

The present work explored alkali-treated coconut petiole fibers (ACPFs) characterization and the effect of fiber loadings on the mechanical properties of poly (lactic acid) (PLA)/ACPF composites for the first time. The physical, mechanical, and interfacial properties, as well as the morphology of the ACPFs were reported. It was found that ACPFs with a density of 0.92 g/cm3 have average tensile strength and tensile modulus equal to 355.77 MPa and 5212.36 MPa. The interfacial strength between ACPFs and PLA was high (14.06 MPa), attributed to the micro-sized holes on the fibers, as established from SEM micrographs. Then composites with varying fiber loadings were fabricated by melt-blending and compression molding. The mechanical (tensile, flexural, and impact) performance of composites was reported. Based on the high interfacial strength between fibers and PLA and the unique "spiral" structure of fibers, the composites reached a high impact strength of 8.2 kJ/m2 and flexural modulus of 6959.70 MPa at 50 wt.%, representing 150% and 50% improvement relative to pure PLA.

7.
J Phys Chem Lett ; 12(50): 12098-12106, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34910479

RESUMO

With their excellent optoelectronic properties, halide perovskite (HP) semiconductors have witnessed successful applications in many fields, such as solar cells, LEDs, photodetectors, transistors, and memristors. Exploiting their fascinating physical nature for the development of single nanodevices with multifunctionalities is significant yet remains challenging. We report a multifunctional device based on the n-perovskite/p-spiro-MeOTAD p-n heterojunction diode that enables the integration of photovoltaic, photodetection, and photosynaptic functions in a single device. The device exhibits a high photoelectronic conversion efficiency (PCE) of 17.64% under AM 1.5G illumination and excellent photodetection characteristics including a low drive voltage of 0.01 V, a short response time of 0.17 s, high switching repeatability, and stability. Coupled with the superior photomemristive effect of the device that can be used for the emulation of short- and long-term memory formation of visual synapses, these results suggest that the HP-based p-n heterojunction devices hold great potential in multifunctional integrated device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA