Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 456: 140070, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38917694

RESUMO

Food adulteration and illegal supplementations have always been one of the major problems in the world. The threat of food adulteration to the health of consumers cannot be ignored. Food of questionable origin causes economic losses to consumers, but the potential health risks cannot be ignored. However, the traditional detection methods are time-consuming and complex. This review mainly discusses the types of adulteration and technologies used to detect adulteration. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is also emphasized in the detection of adulteration and authenticity of origin analysis of various types of food (milk, meat, edible oil, etc.), and the future application direction and feasibility of this technology are analyzed. On this basis, MALDI-TOF MS was compared with other detection methods, highlighting the advantages of this technology in the detection of food adulteration. The future development prospect and direction of this technology are also emphasized.

2.
Foods ; 12(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37238798

RESUMO

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry has been widely used as an emerging technology for the rapid identification of microorganisms. Cronobacter sakazakii (C. sakazakii) is a food-borne pathogen of particular importance to the powdered infant formula (PIF) processing environment due to its high lethality in infants. However, the traditional solid spotting detection method of pretreating samples for MALDI-TOF MS leads only to qualitative detection of C. sakazakii. We developed a new, low-cost, robust liquid spotting pretreatment method and used a response surface methodology to optimize its parameters. The applicability, accuracy, and quantitative potential were measured for different types of samples. The optimal parameters of this method were as follows: a volume of 70% formic acid of 25 µL, treatment with ultrasound at 350 W for 3 min, and a volume of acetonitrile added of 75 µL. These conditions led to the highest identification score for C. sakazakii (1926.42 ± 48.497). This method was found to detect bacteria accurately and reproducibly. When 70 strains of C. sakazakii isolates were analyzed with this method, the identification accuracy was 100%. The detection limit of C. sakazakii in environmental and PIF samples was 4.1 × 101 cfu/mL and 2.72 × 103 cfu/mL, respectively.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37211775

RESUMO

Biochar was derived from Eucheuma (EBC) at a temperature of 500 °C and the resulting biochar was modified using NaOH, KOH, NaOH + KOH and HNO3 + HCl. This study investigated the impact of these modifications on the characteristics of the biochar and its effectiveness in adsorbing phenanthrene (Phe) from an aqueous solution. The results indicated that the surface roughness increased, leading to an increase in the specific surface area, and the development of complex pore structure, leading to a decrease in the polarity and increase in hydrophobicity of biochar modified by a mixture of KOH and HNO3 + HCl (EBC-K and EBC-H). The EBC-K and EBC-H samples exhibited superior surface areas (272.76 and 289.60 m2 g-1) and adsorption capabilities for Phe (removal rates of 99.8% and 99.4%). The pseudo-first order, pseudo-second order and intraparticle diffusion Kinetic model demonstrated that the adsorption process is determined by both physicochemical and intra-particle diffusion. The adsorption process was well described by the Langmuir model. The maximum adsorption capacity of EBC-K and EBC-H was increased by approximately 2.4 times compared with the original biochar. Batch adsorption experiments indicated that the removal rate increases with the increase of dosage. Additionally, EBC-H regenerated from n-hexane removed 85.52% of the Phe solution.


Assuntos
Fenantrenos , Poluentes Químicos da Água , Adsorção , Hidróxido de Sódio , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Cinética , Água
4.
Materials (Basel) ; 16(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049096

RESUMO

Pyrethroids are common contaminants in water bodies. In this study, an efficient mussel shell-based adsorbent was prepared, the effects of factors (calcination temperature, calcination time, and sieved particle size) on the pyrethroid adsorption capacity from calcined shell powder were investigated via Box-Behnken design, and the prediction results of the model were verified. By characterizing (scanning electron microscopy, X-ray diffraction, Fourier infrared spectroscopy, and Brunauer-Emmett-Teller measurements) the adsorbent before and after the optimized preparation process, the results showed that calcined shell powder had a loose and porous structure, and the main component of the shell powder under optimized condition was calcium oxide. The adsorption mechanism was also investigated, and the analysis of adsorption data showed that the Langmuir, pseudo second-order, and intra-particle diffusion models were more suitable for describing the adsorption process. The adsorbent had good adsorption potential for pyrethroids, the adsorption capacity of the two pesticides was 1.05 and 1.79 mg/g, and the removal efficiency was over 40 and 70% at the maximum initial concentration, respectively.

5.
Foods ; 12(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36900599

RESUMO

Cronobacter spp. is a food-borne pathogenic microorganism that can cause serious diseases such as meningitis, sepsis, and necrotizing colitis in infants and young children. Powdered infant formula (PIF) is one of the main contamination routes, in which the processing environment is an important source of pollution. In this investigation, 35 Cronobacter strains isolated from PIF and its processing environment were identified and typed by 16S rRNA sequencing and multilocus sequence typing (MLST) technology. A total of 35 sequence types were obtained, and three new sequence types were isolated for the first time. The antibiotic resistance was analyzed, showing that all isolates were resistant to erythromycin but sensitive to ciprofloxacin. Multi-drug resistant strains accounted for 68.57% of the total, among which Cronobacter strains with the strongest drug resistance reached 13 multiple drug resistance. Combined with transcriptomics, 77 differentially expressed genes related to drug resistance were identified. The metabolic pathways were deeply excavated, and under the stimulation of antibiotic conditions, Cronobacter strains can activate the multidrug efflux system by regulating the expression of chemotaxis-related genes, thus, secreting more drug efflux proteins to enhance drug resistance. The study of drug resistance of Cronobacter and its mechanism has important public health significance for the rational selection of existing antibacterial drugs, the development of new antibacterial drugs to reduce the occurrence of bacterial resistance, and the control and treatment of infections caused by Cronobacter.

6.
Foods ; 11(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35206071

RESUMO

Salmonella Typhimurium (S. Typhimurium) is a globally distributed foodborne pathogen, which can lead to outbreaks of foodborne infectious diseases. It is essential to guarantee food safety by timely and correct detection of S. Typhimurium. In this investigation, an original fluorescence aptasensor was constructed to detect S. Typhimurium rapidly and sensitively. Through the coupling of magnetic beads, aptamer, and gold nanoparticles (AuNPs), a fluorescence quenching system with a "sandwich structure" was established. The aptamer acted as a link, and its specific binding to S. Typhimurium could release AuNPs from the system. Meanwhile, fluorescent DNA-stabilized silver nanoclusters (DNA-AgNCs) were synthesized. The fluorescence intensity changes caused by the fluorescence resonance energy transfer between DNA-AgNCs and AuNPs were utilized to detect S. Typhimurium. The purposed aptasensor exhibited high selectivity and sensitivity with a linear response to S. Typhimurium, ranging from 3.7 × 102 to 3.7 × 105 cfu/mL. The limit of detection (LOD) was estimated to be 98 cfu/mL within 2 h 10 min. In addition, this method showed excellent application for detection of S. Typhimurium in artificially contaminated milk, with LOD reaching 3.4 × 102 cfu/mL. Therefore, the developed fluorescence aptasensor has great potential to identify S. Typhimurium in foodstuffs.

7.
Anal Chim Acta ; 1181: 338903, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34556234

RESUMO

A novel fluorescent platform of DNA-stabilized silver nanoclusters (DNA-AgNCs) has been developed based on exonuclease III (Exo III) amplification-assisted for simple and sensitive detection of Salmonella Typhimurium (S. Typhimurium). The platform was designed by using magnetic beads, aptamer, its complementary DNA, hairpin probe (HP), Exo III, AgNO3, and NaBH4. The functionalized HP contained a cytosine-rich oligonucleotide loop (C-rich loop), which served as an effective template for the chemical reduction of Ag+ with NaBH4 to synthesize DNA-AgNCs. In the presence of S. Typhimurium, the C-rich loop was converted into an open form of ssDNA by the recycle digestion of Exo III, leading to a corresponding decrease in fluorescence intensity. Based on the fluorescence changes of the formed DNA-AgNCs, the sensitive detection of S. Typhimurium was achieved. Under the optimal conditions, a wide linear relationship was observed in the concentration of S. Typhimurium ranging from 4.6 × 102 to 4.6 × 107 cfu mL-1 with the limit of detection (LOD) being 82 cfu mL-1. The method showed good selectivity for detecting S. Typhimurium. In addition, the platform could be used for the detection of S. Typhimurium in milk samples. The LOD reached 6.6 × 102 cfu mL-1 with a good linear range, indicating that the method had excellent practicability in complex food samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , DNA , Exodesoxirribonucleases , Limite de Detecção , Salmonella typhimurium/genética , Prata , Espectrometria de Fluorescência
8.
J Dairy Sci ; 104(11): 11348-11367, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34364644

RESUMO

Members of the Cronobacter genus include food-borne pathogens that can cause infections in infants, with a mortality rate as high as 40 to 80%. The high fatality rate of Cronobacter and its isolation from numerous types of food, especially from powdered infant formula, demonstrate the serious nature of this organism. The source tracking of Cronobacter spp. and the analysis of high-frequency species from different sources are helpful for a more targeted control. Furthermore, the persistence during food processing and storage may be attributed to strong resistance of Cronobacter spp. to environment stresses such as heat, pH, and desiccation. There are many factors that support the survival of Cronobacter spp. in harsh environments, such as some genes, regulatory systems, and biofilms. Advanced detection technology is helpful for the strict monitoring of Cronobacter spp. In addition to the traditional heat treatment, many new control techniques have been developed, and the ability to control Cronobacter spp. has been demonstrated. The control of this bacteria is required not only during manufacture, but also through the selection of packaging methods to reduce postprocessing contamination. At the same time, the effect of inactivation methods on product quality and safety must be considered. This review considers the advances in our understanding of environmental stress response in Cronobacter spp. with special emphasis on its implications in food processing.


Assuntos
Cronobacter sakazakii , Cronobacter , Animais , Cronobacter/genética , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Fórmulas Infantis , Pós
9.
Foods ; 10(7)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34359475

RESUMO

In this paper, a novel and ultrasensitive lateral flow assay (LFA) based on aptamer-magnetic separation, and multifold Au nanoparticles (AuNPs) was developed for visual detecting Salmonella enterica ser. Typhimurium (S. Typhimurium). The method realized magnetic enrichment and signal transduction via magnetic separation and achieved signal amplification through hybridizing AuNPs-capture probes and AuNPs-amplification probes to form multifold AuNPs. Two different thiolated single-strand DNA (ssDNA) on the AuNPs-capture probe played different roles. One was combined with the AuNPs-amplification probe on the conjugate pad to achieve enhanced signals. The other was connected to transduction ssDNA1 released by aptamer-magnetic capture of S. Typhimurium, and captured by the T-line, forming a positive signal. This method had an excellent linear relationship ranging from 8.6 × 102 CFU/mL to 8.6 × 107 CFU/mL with the limit of detection (LOD) as low as 8.6 × 100 CFU/mL in pure culture. In actual samples, the visual LOD was 4.1 × 102 CFU/mL, which did not carry out nucleic acid amplification and pre-enrichment, increasing three orders of magnitudes than unenhanced assays with single-dose AuNPs and no magnetic separation. Furthermore, the system showed high specificity, having no reaction with other nontarget strains. This visual signal amplificated system would be a potential platform for ultrasensitive monitoring S. Typhimurium in milk samples.

10.
J Dairy Sci ; 104(8): 8506-8516, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34053767

RESUMO

Effective testing tools for Escherichia coli O157:H7 can prevent outbreaks of foodborne illness. In this paper, a smartphone-based colorimetric aptasensor was developed using functionalized gold nanoparticles (GNP) and multi-walled carbon nanotubes (MWCNT) for monitoring E. coli O157:H7 in milk. The maximum absorption peak of GNP bonded with aptamer (Apt) generated evident transformation from 518 to 524 nm. The excess GNP-Apt was removed by functionalized MWCNT magnetized with carbonyl iron powder (CIP) and hybridized with a DNA probe, whereas the GNP-Apt immobilized on E. coli O157:H7 remained in the system. In the presence of a high-salt solution, the GNP-Apt that captured E. coli O157:H7 remained red, but the free GNP-Apt aggregated and appeared blue. The chromogenic results were analyzed by a smartphone-based colorimetric device that was fabricated using acrylic plates, a light-emitting diode, and a mobile power pack. To our knowledge, this was the first attempt to use a smartphone-based colorimetric aptasensor employing the capture of GNP-Apt coupled with separation of MWCNT@CIP probe to detect E. coli O157:H7. The aptasensor exhibited good reproducibility and no cross-reaction for other bacteria. A concentration of 8.43 × 103 cfu/mL of E. coli O157:H7 could be tested in pure culture, and 5.24 × 102 cfu/mL of E. coli O157:H7 could be detected in artificially contaminated milk after 1 h of incubation. Therefore, the smartphone-based colorimetric aptasensor was an efficient tool for the detection of E. coli O157:H7 in milk.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Nanopartículas Metálicas , Nanotubos de Carbono , Animais , Técnicas Biossensoriais/veterinária , Colorimetria/veterinária , Microbiologia de Alimentos , Ouro , Leite , Reprodutibilidade dos Testes , Smartphone
11.
J Dairy Sci ; 104(8): 8517-8529, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33896635

RESUMO

Escherichia coli O157:H7 (E. coli O157:H7), one of the most widespread foodborne pathogens, can cause a series of diseases and even lead to death. In this study, a highly sensitive method was developed by combining aptamer-exonuclease III (Exo III)-assisted amplification with lateral flow assay (LFA) based on gold nanoparticles (AuNP). The compound of single-stranded (ss) DNA-anti-E. coli O157:H7 aptamer (ssDNA-aptamer) was formed by hybridization between designed target ssDNA and aptamer. When E. coli O157:H7 was present, target bacteria were bound with the aptamer, and the free target ssDNA was hybridized with the probes of the designed hairpin (HP) structure. Exo III digests the 3' double-stranded blunt end of the complex and releases the enzyme product. Because the remaining sequence of the HP of the designed enzyme product was the same as the target ssDNA sequence, the target ssDNA could be amplified. Finally, the enhanced target ssDNA was combined with AuNP-LFA to achieve visual detection of E. coli O157:H7. The quantitative ability of this platform for E. coli O157:H7 was 7.6 × 101 cfu/mL in pure culture, and the detection limit in milk was 8.35 × 102 cfu/mL. This LFA was highly specific to E. coli O157:H7, and the time for detection of E. coli O157:H7 in milk was 4 h. Hence, this system has important application prospects in the detection of pathogenic bacteria in dairy products.


Assuntos
Escherichia coli O157 , Nanopartículas Metálicas , Animais , Exodesoxirribonucleases , Microbiologia de Alimentos , Ouro , Leite
12.
J Dairy Sci ; 104(5): 5152-5165, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33663822

RESUMO

Due to the lack of specific genes for rapid detection methods of Cronobacter sakazakii in food samples, whole genome sequence analysis was performed in this investigation using the basic local alignment search tool. Forty-two DNA fragments unique to C. sakazakii were mined, then primers were designed and screened by PCR and loop-mediated isothermal amplification (LAMP). Two primer sets, CS1 and CS31, were found as specific and stable primers, with their corresponding nucleic acid targets the CSK29544_00235 gene and CSK29544_03484 gene, respectively. Furthermore, compared with 3 genes reported previously, these 2 genes were verified as more specific to C. sakazakii among Cronobacter species, by sequence similarity alignment using Cronobacter MLST databases (http://pubmlst.org/cronobacter). The specificity of the LAMP reaction approached 100% by using 48 bacterial strains, which included 22 C. sakazakii strains. Subsequently, LAMP was combined with visual lateral flow dipstick (LFD) based on the above 2 nucleic acid targets, and was demonstrated as a rapid, efficient method with high specificity. Finally, the detection sensitivity of this assay system for pure cultures and artificially contaminated milk was measured as 4.5 × 100 cfu/mL and 5.7 × 101 cfu/g, respectively. Total time to detection for this assay was within 2 h. Thus, the establishment of this LAMP-LFD method shows great significance and potential for rapid detection of C. sakazakii in powdered infant formula.


Assuntos
Cronobacter sakazakii , Cronobacter , Ácidos Nucleicos , Animais , Cronobacter/genética , Cronobacter sakazakii/genética , Microbiologia de Alimentos , Fórmulas Infantis , Técnicas de Diagnóstico Molecular , Tipagem de Sequências Multilocus/veterinária , Técnicas de Amplificação de Ácido Nucleico , Pós
13.
J Dairy Sci ; 103(9): 7879-7889, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32600757

RESUMO

Escherichia coli O157:H7 is an extremely serious foodborne pathogen accounting for a vast number of hospitalizations. In this system, a simple, rapid, and safe compound method was developed based on carbonyl iron powder (CIP) and multiwalled carbon nanotubes (MWCNT). Then, the CIP@MWCNT-based aptasensor was constructed by strong π-stacking between nanocomposite and aptamer, single-strand DNA, causing fluorescent quenching of the dye-labeled aptamer. The restoration of dye fluorescence could be achieved when aptamer came off the surface of the CIP@MWCNT nanocomposite due to the presence of target bacteria. To the best of our knowledge, this fabrication of magnetic carbon nanotubes without irritating and corrosive reagents is described for the first time. The sensing platform was also an improvement on the conventional formation of the aptasensor between carbon materials and DNA aptamer. The nanocomposite was verified by diverse characterization of zeta potential, Fourier-transform infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray analysis. The CIP@MWCNT-based aptasensor was an effective nanoplatform for quantitative detection of E. coli O157:H7, and was measured to have high specificity, good reproducibility, and strong stability. The aptasensor's capacity to quantify E. coli O157:H7 was as low as 7.15 × 103 cfu/mL in pure culture. The detection limit of E. coli O157:H7 was 3.15 × 102 cfu/mL in contaminated milk after 1 h of pre-incubation. Hence, the developed assay is a new possibility for effective synthesis of nanocomposites and sensitive tests of foodborne pathogens in the dairy industry.


Assuntos
Escherichia coli O157/isolamento & purificação , Fluorometria/veterinária , Leite/microbiologia , Nanocompostos , Animais , Técnicas Biossensoriais , Fluorometria/métodos , Microbiologia de Alimentos , Nanotubos de Carbono , Reprodutibilidade dos Testes
14.
J Dairy Sci ; 103(8): 6882-6893, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32505404

RESUMO

Due to the lack of electricity and thermostatic instruments in certain settings for convenient detection of Cronobacter species in powdered infant formula (PIF), a novel investigation was conducted to establish an electricity-free visual detection system for rapid detection of Cronobacter species in PIF. This system included a portable electricity-free heater that could use the exothermic reaction of calcium oxide and water and 3 kinds of phase change materials to supply 3 constant temperatures for immunomagnetic separation, DNA extraction, and loop-mediated isothermal amplification assay. Meanwhile, the amplified reaction combined with hydroxynaphthol blue could achieve rapid visual detection. Primers designed based on the 16S-23S ribosomal RNA internal transcribed spacer were used in loop-mediated isothermal amplification to specifically monitor Cronobacter species, and the detection limit can reach 4.2 × 102 cfu/g in PIF by an electricity-free heater in 2 h 30 min. Moreover, 2 h of pre-enrichment was necessary when the level of the PIF samples with Cronobacter spp. was 100 cfu/g. The stability of the system was evaluated in ambient temperature at 4°C, 25°C, and 37°C. The results suggested that the electricity-free heater can maintain 3 constant temperatures to support different processes. Therefore, this amplification and visual system is applicable for use in many fields for rapid and specific detection of Cronobacter species in PIF.


Assuntos
Cronobacter/isolamento & purificação , Microbiologia de Alimentos , Separação Imunomagnética/métodos , Fórmulas Infantis/microbiologia , Cronobacter/genética , Primers do DNA/genética , Humanos , Lactente , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/veterinária , Pós
15.
J Dairy Sci ; 103(5): 4002-4012, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32113770

RESUMO

In this study, we established a rapid, simple, and sensitive method for visual and point-of-care detection of Salmonella spp., Cronobacter spp., and Staphylococcus aureus in powdered infant formula (PIF) based on multiplex loop-mediated isothermal amplification (mLAMP) combined with lateral flow dipstick (LFD). Three different species-specific target genes, siiA of Salmonella spp., internal transcribed space (ITS) of Cronobacter spp., and nuc of Staph. aureus, were applied in the mLAMP with biotin-, digoxin-, and Texas Red-modified forward inner primers and fluorescein isothiocyanate (FITC)-modified backward inner primers. After mLAMP, a large number of modified amplicons were detected with LFD; one end of the amplicon was conjugated to the anti-FITC antibody on gold nanoparticles and the other end to streptavidin (anti-digoxin or anti-Texas Red antibody) on test lines. Visual inspection of the device relies on the presence of a red band formed by accumulation of sandwich composites. The detection limits of this mLAMP-LFD assay for Salmonella spp., Cronobacter spp., and Staph. aureus in PIF without enrichment were 4.2, 2.6, and 3.4 cfu/g, respectively. The whole method can be completed in less than 1 h. Thus, mLAMP-LFD is a rapid and efficient method for simultaneously detecting Salmonella spp., Cronobacter spp., and Staph. aureus in PIF.


Assuntos
Cronobacter/isolamento & purificação , Fórmulas Infantis/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Salmonella/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Cronobacter/genética , Primers do DNA/genética , Ouro , Limite de Detecção , Nanopartículas Metálicas , Pós , Salmonella/genética , Sensibilidade e Especificidade , Staphylococcus aureus/genética
16.
RSC Adv ; 10(72): 44344-44351, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35517176

RESUMO

Acetochlor has been widely used globally for its effective weed control, but the dietary intake of associated residues by people has become a major concern nowadays. Milk is regarded as the best solvent to dissolve pesticides due to its fat-rich characteristic. In this study, we aimed to evaluate the transfer of acetochlor from feed to raw milk. Twenty lactating Australian Holstein cows were randomly chosen and divided into 1 control group and 3 treatment groups, feeding acetochlor at the dosages of 0, 0.45, 1.35 and 4.05 g per day during the treatment period. The concentration of acetochlor residues in raw milk was detected by QuEChERS together with a gas chromatography-mass spectrometry (GC-MS) method. The results showed that the highest concentrations of acetochlor residues in raw milk for the three treatment groups had a positive correlation with the dosage levels and the transfer efficiency of the low dose group was only 0.080%, higher than those of the other two groups. Besides, the national estimated daily intake (NEDI) of acetochlor from milk is 1.67 × 10-5 mg kg-1, which is 0.08% of the ADI. Overall, we concluded that the risk of acetochlor residues in milk was low, but high-dose acetochlor had a larger impact on milk quality and low-dose acetochlor had potential risks.

17.
AMB Express ; 8(1): 155, 2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30269246

RESUMO

Cronobacter species previously known as Enterobacter sakazakii poses high risks to neonates and infants. In this work a rapid detection method was developed which combined loop-mediated isothermal amplification with lateral flow assay for detection of Cronobacter species in powdered infant formula. The fast amplification reaction without betaine was established and capable of performing DNA replication within 25 min. Based on the novel probe-free labeling methods, we established a lateral flow assay to capture the specific loop-mediated isothermal amplification amplicons which were labeled with fluorescein isothiocyanate and biotin. And the final detection time of this system was within 40 min. The false positive results of the lateral flow assay induced by primer dimer tagged with fluorescein isothiocyanate and biotin were eliminated by Taq single strand DNA binding protein (4 ng/µL). Simultaneously, the efficiency of the fast loop-mediated isothermal amplification assay was achieved. By injection of Taq SSB into the amplification assay as a replacement for betaine, the novel probe-free method could detect Cronobacter species with high specificity and sensitivity at the detection limit in PIF of 101 cfu/g. Our overall strategy has excellent potential in the rapid diagnosis of Cronobacter species label-free by integrating loop-mediated isothermal amplification and lateral flow assay.

18.
Anal Chim Acta ; 1036: 80-88, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30253840

RESUMO

Cronobacter spp. are recognized as a world-wide emerging opportunistic food-borne pathogens that can persist in various food and processing environment for a long time. Therefore, the prevention and detection of them are particularly important. In this study, a micro-spot paper-based analytical device (µPADs) was created by combining PVC pad with filter paper. Detection is achieved by measuring the color change (from colorless to indigo) when a species-specific enzyme associated with the Cronobacter spp. of interest reacts with a chromogenic substrate. When combined with the optimization of specific enrichment process, the method allows for a testing time of 10 h or less and is capable of detecting live bacteria on the inoculated surface of samples in concentrations as low as 101 CFU cm-2. We are surprised to discover that C. dublinensis species and their subspecies had the highest ability to produce α-glucosidase in all genus of Cronobacter spp.. This work demonstrated that the manufacturing method is novel, simple, well reproducible (RSD less than 5%) and low-cost (less than $ 0.15 per micro-spot).


Assuntos
Colorimetria/economia , Cronobacter/isolamento & purificação , Contaminação de Alimentos/análise , Papel , Cronobacter/genética , Microbiologia de Alimentos , Conformação Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA