Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 5, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172714

RESUMO

BACKGROUND: The abnormality of chromosomal karyotype is one factor causing poor prognosis of lymphoma. In the analysis of abnormal karyotype of lymphoma patients, three smallest overlap regions were found, in which MYCT1 was located. MYCT1 is the first tumor suppressor gene cloned by our research team, but its studies relating to the occurrence and development of lymphoma have not been reported. METHODS: R banding analyses were employed to screen the abnormality of chromosomal karyotype in clinical specimen and MYCT1 over-expression cell lines. FISH was to monitor MYCT1 copy number aberration. RT-PCR and Western blot were to detect the mRNA and protein levels of the MYCT1 and RUNX1 genes, respectively. The MYCT1 and RUNX1 protein levels in clinical specimen were evaluated by immunohistochemical DAB staining. The interaction between MYCT1 and MAX proteins was identified via Co-IP and IF. The binding of MAX on the promoter of the RUNX1 gene was detected by ChIP and Dual-luciferase reporter assay, respectively. Flow cytometry and CCK-8 assay were to explore the effects of MYCT1 and RUNX1 on the cell cycle and proliferation, respectively. RESULTS: MYCT1 was located in one of three smallest overlap regions of diffuse large B-cell lymphoma, it altered chromosomal instability of diffuse large B-cell lymphoma cells. MYCT1 negatively correlated with RUNX1 in lymphoma tissues of the patients. MAX directly promoted the RUNX1 gene transcription by binding to its promoter region. MYCT1 may represses RUNX1 transcription by binding MAX in diffuse large B-cell lymphoma cells. MYCT1 binding to MAX probably suppressed RUNX1 transcription, leading to the inhibition of proliferation and cell cycle of the diffuse large B-cell lymphoma cells. CONCLUSION: This study finds that there is a MYCT1-MAX-RUNX1 signaling pathway in diffuse large B-cell lymphoma. And the study provides clues and basis for the in-depth studies of MYCT1 in the diagnosis, treatment and prognosis of lymphoma.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Linfoma Difuso de Grandes Células B , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regiões Promotoras Genéticas , Linfoma Difuso de Grandes Células B/genética , Hematopoese , Linhagem Celular Tumoral , Proteínas Nucleares/metabolismo
2.
Commun Biol ; 7(1): 63, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191598

RESUMO

Laryngeal squamous cell carcinoma (LSCC) is a malignant tumor with a high probability of metastasis. The tumor microenvironment (TME) plays a critical role in cancer metastasis. To gain insights into the TME of LSCC, we conducted single-cell RNA-seq (scRNA-seq) on samples collected from LSCC patients with or without lymphatic metastasis. The stem and immune cell signatures in LSCC suggest their roles in tumor invasion and metastasis. Infiltration of a large number of regulatory T cells, dysplastic plasma cells, and macrophages that are at the early development stage in the cancerous tissue indicates an immunosuppressive state. Abundant neutrophils detected at the cancer margins reflect the inflammatory microenvironment. In addition to dynamic ligand-receptor interactions between the stromal and myeloid cells, the enhanced autophagy in endothelial cells and fibroblasts implies a role in nutrient supply. Taken together, the comprehensive atlas of LSCC obtained allowed us to identify a complex yet unique TME of LSCC, which may help identify potential diagnostic biomarkers and therapeutic targets for LSCC.


Assuntos
Células Endoteliais , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Microambiente Tumoral/genética , Perfilação da Expressão Gênica
3.
iScience ; 26(9): 107609, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664593

RESUMO

Tubulointerstitial abnormalities contribute to the progression of diabetic kidney disease (DKD). However, the underlying mechanism of the pathobiology of tubulointerstitial disease is largely unknown. Here, we showed that MYCT1 expression was downregulated in in vitro and in vivo DKD models. Adeno-associated virus (AAV)-Myct1 significantly attenuated renal dysfunction and tubulointerstitial fibrosis in diabetic db/db mice and downregulated Sp1 transcription and TGF-ß1/SMAD3 pathway activation. In human proximal tubular epithelial cells, high glucose-induced high expression of SP1 and TGF-ß1/SMAD3 pathway activation as well as overaccumulation of extracellular matrix (ECM) were abrogated by MYCT1 overexpression. Mechanistically, the binding of VDR to the MYCT1 promoter was predicted and confirmed using dual-luciferase reporter and ChIP analysis. VDR transcriptionally upregulates MYCT1. Our data reveal MYCT1 as a new and potential therapeutic target in treating DKD.

4.
Biomed Pharmacother ; 165: 115208, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37499454

RESUMO

Myc target 1 (MYCT1), located at 6q25.2, is a crucial player in cancer development. While widely distributed in cells, its subcellular localization varies across different cancer types. As a novel c-Myc target gene, MYCT1 is subject to regulation by multiple transcription factors. Studies have revealed aberrant expression of MYCT1 in various cancers, impacting pivotal biological processes such as proliferation, apoptosis, migration, genomic instability, and differentiation in cancer cells. Additionally, MYCT1 plays a critical role in modulating tumor angiogenesis and remodeling tumor immune responses within the tumor microenvironment. Despite certain debated functions, MYCT1 undeniably holds significance in cancer development. In this review, we comprehensively examine the relationship between MYCT1 and cancer, encompassing gene structure, regulation of gene expression, gene mutation, and biological function, with the aim of providing valuable insights for cancer diagnosis and treatment.


Assuntos
Neoplasias , Proteínas Nucleares , Proteínas Proto-Oncogênicas c-myc , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Humanos , Proteínas Nucleares/genética
5.
Dev Cell ; 58(9): 779-790.e4, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37023748

RESUMO

Reports that mouse sperm gain small RNAs from the epididymosomes secreted by epididymal epithelial cells and that these "foreign" small RNAs act as an epigenetic information carrier mediating the transmission of acquired paternal traits have drawn great attention because the findings suggest that heritable information can flow from soma to germ line, thus invalidating the long-standing Weismann's barrier theory on heritable information flow. Using small RNA sequencing (sRNA-seq), northern blots, sRNA in situ hybridization, and immunofluorescence, we detected substantial changes in the small RNA profile in murine caput epididymal sperm (sperm in the head of the epididymis), and we further determined that the changes resulted from sperm exchanging small RNAs, mainly tsRNAs and rsRNAs, with cytoplasmic droplets rather than the epididymosomes. Moreover, the murine sperm-borne small RNAs were mainly derived from the nuclear small RNAs in late spermatids. Thus, caution is needed regarding sperm gaining foreign small RNAs as an underlying mechanism of epigenetic inheritance.


Assuntos
Epididimo , MicroRNAs , Masculino , Camundongos , Animais , Maturação do Esperma/genética , Sêmen , Espermatozoides , MicroRNAs/genética , Espermátides
6.
iScience ; 25(3): 103955, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35281731

RESUMO

MYCT1 has been shown to function as a tumor suppressor in various tumors, but its role in metabolism has never been reported. Here, we showed that global inactivation of Myct1 in mice led to progressive accumulation of glycogen in the liver, which was accompanied by aberrant changes in intermediates of the glycogen metabolic pathway. Mechanistically, MYCT1 appeared to promote translation efficiency of PGM1, UGP2 and GSK3A in hepatic cells in a RACK1-dependent manner. Consequently, upregulation of the three enzymes enhanced the glycogen shunt. Our data reveal a critical role of MYCT1 as a switch for the glycogen shunt in tumor cells.

7.
Oxid Med Cell Longev ; 2022: 5130546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035663

RESUMO

Congenital heart disease (CHD) is the most common noninfectious cause of death during the neonatal stage. T-box transcription factor 1 (TBX1) is the main genetic determinant of 22q11.2 deletion syndrome (22q11.2DS), which is a common cause of CHD. Moreover, ferroptosis is a newly discovered kind of programmed cell death. In this study, the interaction among TBX1, miR-193a-3p, and TGF-ß2 was tested using quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, and dual-luciferase reporter assays. TBX1 silencing was found to promote TGF-ß2 messenger ribonucleic acid (mRNA) and protein expression by downregulating the miR-193a-3p levels in H9c2 cells. In addition, the TBX1/miR-193a-3p/TGF-ß2 axis was found to promote ferroptosis based on assessments of lipid reactive oxygen species (ROS) levels, Fe2+ concentrations, mitochondrial ROS levels, and malondialdehyde (MDA) contents; Cell Counting Kit-8 (CCK-8) assays and transmission electron microscopy; and Western blotting analysis of glutathione peroxidase 4 (GPX4), nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), NADPH oxidase 4 (NOX4), and acyl-CoA synthase long-chain family member 4 (ACSL4) protein expression. The protein expression of NRF2, GPX4, HO-1, NOX4, and ACSL4 and the level of MDA in human CHD specimens were also detected. In addition, TBX1 and miR-193a-3p expression was significantly downregulated and TGF-ß2 levels were high in human embryonic CHD tissues, as indicated by the H9c2 cell experiments. In summary, the TBX1/miR-193a-3p/TGF-ß2 axis mediates CHD by inducing ferroptosis in cardiomyocytes. TGF-ß2 may be a target gene for CHD diagnosis and treatment in children.


Assuntos
Ferroptose/genética , Cardiopatias Congênitas/genética , Proteínas com Domínio T/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Células HEK293 , Humanos , Transfecção
8.
Arch Oral Biol ; 133: 105297, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34742001

RESUMO

OBJECTIVE: We aimed to identify the role of DOCK6 in oral squamous cell cancer (OSCC) in this study. DESIGN: DOCK6 expression in OSCC was analyzed using TCGA and GEO datasets and was verified by quantitative real-time PCR, Western blotting, and immunohistochemistry. Statistical analyses were performed to evaluate the relationships between DOCK6 expression and the clinicopathological characteristics of OSCC patients. Wound healing and Transwell assays were performed to assess OSCC cell migration and invasion, respectively. STRING and GO analyses and gene set enrichment analysis were used to identify DOCK6-interacting proteins, their functions and their potential pathways. RESULTS: DOCK6 was significantly upregulated at both the mRNA and protein levels in OSCC tissues (all P < 0.05). DOCK6 levels were positively correlated with age (P < 0.05), lymph node metastasis status (P < 0.001), clinical stage (P < 0.001), differentiation (P < 0.05), and poor clinical outcome (P < 0.05) in OSCC patients. Furthermore, univariate and multivariate analyses revealed that high DOCK6 expression (P < 0.01) and clinical stage III-IV (P < 0.05) might serve as independent prognostic factors for OSCC patients. Functionally, DOCK6 silencing significantly suppressed OSCC cell migration and invasion (all P < 0.05). Ten proteins that interact with DOCK6, more than ten functions related to cancer, and more than six pathways related to DOCK6 in OSCC were identified via bioinformatic methods. CONCLUSION: DOCK6 is upregulated in OSCC, is associated with a poor prognosis in OSCC patients and increases OSCC cells migration and invasion. These findings suggest that DOCK6 may be a potential therapeutic target with prognostic implication in patients with OSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células Epiteliais , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Prognóstico
9.
Cancer Control ; 28: 10732748211011951, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33910393

RESUMO

PURPOSE: Dedicator of cytokinesis 8 (DOCK8) was reported to have a vital link to immunoregulation. However, the mechanisms by which it drives immune infiltration in cancer remain uncertain. We tried to assess the role of DOCK8 in patients with cancer, especially human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC). METHODS: Data on the expression and survival of DOCK8 in patients with various cancers were analyzed using the Oncomine and TIMER databases. The TIMER database assessed the relationship of DOCK8 with immune infiltration levels and various markers of multiple immune cells. Gene set enrichment analysis revealed tumor-associated biological processes related to DOCK8. ENCODE database was used to explore relevant transcription factors of DOCK8, and a PPI network was constructed using GENEMINIA. The expression and survival role of DOCK8 was confirmed in patients from independent GEO datasets. RESULTS: We determined that DOCK8 expression was upregulated or downregulated in various cancers unlike in healthy tissues. A high expression of DOCK8 was significantly correlated with a favorable prognosis in HPV-positive HNSCC and lung adenocarcinoma (LUAD). Furthermore, multivariate Cox regression analysis revealed that DOCK8 was an independent prognostic factor of HPV-positive HNSCC. Additionally, elevated DOCK8 expression was positively correlated with multiple immune cell infiltration levels and immune marker expression associated with particular immune cell subsets. Also, 14 pathways involved in immune activities and carcinogenesis, 22 potential TFs, and co-expression proteins of DOCK8 indicated DOCK8 to be related to tumor-associated biological processes. Ultimately, we verified that DOCK8 is upregulated and confers a favorable overall survival and progression-free survival status in patients with HPV-positive HNSCC. CONCLUSION: These results elucidate that high expression of DOCK8 indicates a favorable prognosis in patients with HPV-positive HNSCC as well as increased microenvironmental immune infiltration levels. It would provide new insights into the prognosis predicting and clinical regimen decision making in patients with HPV-positive HNSCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Humanos , Prognóstico , Estudos Prospectivos
10.
Cell Signal ; 74: 109709, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32659265

RESUMO

MYCT1 has an inhibitory effect on the migration of laryngeal cancer cells, although the underlying molecular mechanism remains unknown. In this study, we aimed to explore the mechanism of MYCT1 in the epithelial-mesenchymal transition (EMT) and migration of laryngeal cancer cells. We found that MYCT1 significantly decreased the expression of miR-629-3p but increased the expression of ESRP2 in laryngeal cancer cells. The expression of miR-629-3p and ESRP2 in laryngeal cancer tissues showed significantly positive and negative correlations with patient metastasis, respectively. miR-629-3p was confirmed to repress the expression of ESRP2 by targeting its 3'UTR. SP1 was verified to be a direct transcription factor for miR-629-3p and a downstream target of MYCT1. Moreover, MYCT1 inhibited the EMT and migration of laryngeal cancer cells through the SP1/miR-629-3p/ESRP2 pathway. Taken together, our results establish a novel MYCT1 signaling pathway in the EMT and migration of laryngeal cancer cells, thus providing important insights for further studying the pathway in the diagnosis and treatment of laryngeal cancer.


Assuntos
MicroRNAs/metabolismo , Proteínas Nucleares/fisiologia , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição Sp1/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Laríngeas
11.
Front Oncol ; 10: 564733, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33680912

RESUMO

MYCT1, a target of c-Myc, inhibits laryngeal cancer cell migration, but the underlying mechanism remains unclear. In the study, we detected differentially expressed genes (DEGs) from laryngeal cancer cells transfected by MYCT1 using RNA-seq (GSE123275). DEGs from head and neck squamous cell carcinoma (HNSCC) were first screened by comparison of transcription data from the Gene Expression Omnibus (GSE6631) and the Cancer Genome Atlas (TCGA) datasets using weighted gene co-expression network analysis (WGCNA). GO and KEGG pathway analysis explained the functions of the DEGs. The DEGs overlapped between GSE6631and TCGA datasets were then compared with ours to find the key DEGs downstream of MYCT1 related to the adhesion and migration of laryngeal cancer cells. qRT-PCR and Western blot were applied to validate gene expression at mRNA and protein levels, respectively. Finally, the cell adhesion, migration, and wound healing assays were to check cell adhesion and migration abilities, respectively. As results, 39 overlapping genes were enriched in the GSE6631 and TCGA datasets, and most of them revealed adhesion function. Thirteen of 39 genes including COL6 members COL6A1, COL6A2, and COL6A3 were overlapped in GSE6631, TCGA, and GSE123275 datasets. Similar to our RNA-seq results, we confirmed that COL6 is a target of MYCT1 in laryngeal cancer cells. We also found that MYCT1 inhibited the adhesion and migration of laryngeal cancer cells via COL6. These indicate that COL6 is a potential target of MYCT1 and participates the adhesion and migration of laryngeal cancer cells, which provides an important clue for further study on how MYCT1 regulating COL6 in laryngeal cancer progression.

12.
Life Sci ; 239: 117040, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31704448

RESUMO

Congenital heart disease (CHD) is the most common birth defect in newborns. There is increasing evidence that apoptosis and remodeling of the cardiomyoblasts are the major pathology of CHD. Previous research found that T-box transcription factor 3 (TBX3) was compulsory for the regulation of proliferation, cell cycle arrest and apoptosis in various cells. Hence, TBX3 might be involved in the treatment of CHD. The primary aim of this study was to study the effects of TBX3 on apoptosis in aged cardiomyoblasts and investigate the latent mechanism. In the present study, we found TBX3 knockdown induced proliferation inhibition, cell cycle arrest and apoptosis accompanied by mitochondrial dysfunction in cardiomyoblasts at passage 10 to 15. Apoptosis-inducing effects of TBX3 silence could be neutralized by silencing P21 using specific siRNA. In addition, the mRNA and protein expression levels of TBX3 in the heart tissues of sporadic type CHD donors were obviously down-regulated. In conclusion, we demonstrated that TBX3 deficiency accelerated apoptosis via directly regulating P21 expression in senescent cardiomyoblasts.


Assuntos
Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , China , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feto , Regulação da Expressão Gênica/genética , Cardiopatias Congênitas/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Ratos , Proteínas com Domínio T/fisiologia , Fatores de Transcrição/metabolismo
13.
FEBS J ; 286(19): 3892-3908, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31152622

RESUMO

MYCT1 is an important gene known to regulate cell viability and apoptosis of laryngeal cancer cells. However, the underlying molecular mechanism remains unclear. Here, we show that MAX enhances the expression of miR-181a by directly binding to its promoter, whereas miR-181a targets NPM1 and suppresses its expression in laryngeal cancer cells. MYCT1 and miR-181a decrease cell viability and colony formation through enhanced apoptosis, whereas NPM1 displays opposite effects in laryngeal cancer cells. Their opposing functions are further supported by the findings (a) that miR-181a is down-regulated, while NPM1 is up-regulated in laryngeal cancer, and (b) that either inhibition of miR-181a or overexpression of NPM1 can revert the pro-apoptotic effects of MYCT1 on laryngeal cancer cells through extracellular and intracellular apoptotic pathways. Our data suggest that MYCT1 may synergistically interact with MAX as a co-transcription factor or a component of MAX transcriptional complex, to transcriptionally regulate the expression of miR-181a, which, in turn, decreases NPM1 expression at post-transcriptional levels, leading to enhanced apoptosis in laryngeal cancer cells. These factors may serve as potential targets for early diagnosis and treatment of laryngeal cancer.


Assuntos
Apoptose/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neoplasias Laríngeas/patologia , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Linhagem Celular Tumoral , Regulação para Baixo , Células HEK293 , Humanos , Neoplasias Laríngeas/metabolismo , MicroRNAs/genética , Proteínas Nucleares/genética , Nucleofosmina , Oncogenes , Ligação Proteica , Transcrição Gênica
14.
Curr Mol Med ; 19(3): 164-171, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31032751

RESUMO

PURPOSE: Systemic lupus erythematosus (SLE) is a complex autoimmune disease with marked disparities in prevalence and disease severity among different ethnic groups. The purpose of this study is to characterize a Latin American cohort and identify genetic risk factors for developing SLE and its end-organ manifestations in this Latin Hispanic cohort. METHODS: A total of 201 SLE cases and 205 non-diseased controls were recruited in the Dominican Republic (DR). Cases were defined according to the 1997 revised American College of Rheumatology criteria for the classification of SLE. Genomic DNA was prepared from whole blood and applied to genotyping analyses for 42 single nucleotide polymorphisms (SNPs) that have been implicated in autoimmune diseases, including SLE, in other ethnic populations. Data were analyzed by Fisher's Exact Probability Test. RESULTS: In this cohort, SNP rs9271366 (tag SNP for HLA-DRB1*15:01) confers the highest risk for SLE among the 13 MHC gene alleles that display association with SLE (p = 8.748E-10; OR = 3.5). Among the 26 non-MHC gene alleles analyzed, SNP rs2476601 in PTPN22 gene confers the highest risk for SLE (p = 0.0001; OR = 5.6). ITGAM, TNFSF4, TNIP1, STAT4, CARD11, BLK, and TNXB gene alleles were confirmed as SLE-susceptible alleles in the DR cohort. However, IRF5 and TNFAIP3 gene alleles, established risk factors for SLE in populations of European and Asian ancestry, are not significantly associated with SLE in this cohort. We also defined a novel HLA-DRA haplotype that confers an increased risk for lupus nephritis (LN) and alleles in HLA-DRA2 and TNFSF4 genes as genetic risk factors for developing neuropsychiatric (NP) SLE. CONCLUSION: Our data suggest that the Latin American population shares some common genetic risk factors for SLE as other populations, but also has distinct risk gene alleles that contribute to SLE susceptibility and development of LN and NPSLE. This is the first study focusing on genetic risk factors for SLE in the DR, a Latin American population that has never been characterized before.


Assuntos
Alelos , Estudos de Associação Genética , Predisposição Genética para Doença , Hispânico ou Latino , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Fenótipo , Adulto , Estudos de Casos e Controles , República Dominicana , Feminino , Estudos de Associação Genética/métodos , Antígenos HLA/genética , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Polimorfismo de Nucleotídeo Único
15.
Cytogenet Genome Res ; 159(4): 190-200, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31982878

RESUMO

It is currently believed that the TBX1 gene is one of the core genes of congenital heart disease (CHD). However, there are few studies on the abnormal regulation of TBX1 gene expression. The purpose of this work was to investigate the role of miR-144 and TBX1 in cardiac development by studying the regulatory relationship and mechanism of miR-144 on TBX1/JAK2/STAT1 in cardiomyocytes. Cell proliferation was detected by MTT and clone formation assay and cell cycle and apoptosis by flow cytometry. The levels of miR-144 and TBX1 in H9c2 cells were assessed by qRT-PCR. Dual luciferase reporter assay was used to validate the direct targeting of TBX1 with miR-144. The protein expression levels of TBX1 and its downstream proteins were measured by Western blot analysis. miR-144 inhibited H9c2 cell proliferation by arresting cells in G1 phase. Furthermore, miR-144 induced H9c2 cell apoptosis and activated the JAK2/STAT1 signaling pathway. Bioinformatic predictions and luciferase reporter assay showed that miR-144 directly targets TBX1. Co-overexpression of miR-144 and TBX1 upregulated cell proliferation by accelerating G1 to S phase transition and downregulated cell apoptosis through inhibiting the JAK2/STAT1 signaling pathway. miR-144 acts as a proliferation inhibitor in cardiomyocytes via the TBX1/JAK2/STAT1 axis and is therefore a potential novel therapeutic target for CHD treatment.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Janus Quinase 2/genética , MicroRNAs/genética , Miócitos Cardíacos/fisiologia , Fator de Transcrição STAT1/genética , Transdução de Sinais/genética , Proteínas com Domínio T/genética , Animais , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Regulação para Baixo/genética , Fase G1/genética , Ratos , Fase S/genética , Regulação para Cima/genética
16.
Onco Targets Ther ; 11: 1323-1331, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29563811

RESUMO

PURPOSE: CREB, MYCY1 and NAT10 are involved in cancer cell migration. However, the relationship between these three proteins and their role in laryngeal cancer cell migration remains unknown. METHODS: Transient gene transfection was performed in laryngeal cancer cells. Bioinformatics analysis was used to predict the binding of CREB to MYCT1 promoter. Binding of CREB to the promoter of MYCT1 was monitored by luciferase reporter assay and chromatin immuno-precipitation method in vitro and in vivo, respectively. Real-time RT-PCR and Western bolt were applied to detect gene transcription and translation levels, respectively. Laryngeal cancer cell migration was assayed by transwell chamber experiment. RESULTS: CREB protein expression was significantly up-regulated in laryngeal cancer tissues and associated with cancer differentiation, tumor stage, and lymphatic metastasis. CREB inhibits MYCT1 expression by direct binding to its promoter. Meanwhile, MYCT1 has a negative impact on the NAT10 gene expression. Furthermore, CREB promotes NAT10 expression via down-regulating the MYCT1 gene expression. In addition, contrary to MYCT1, CREB and NAT10 enhanced laryngeal cancer cell migration. MYCT1 and NAT10 significantly rescued the effects of CREB and MYCT1 on Hep2 cell migration, respectively. CONCLUSION: CREB promotes laryngeal cancer cell migration via MYCT1/NAT10 axis, suggesting that CREB might be a potential prognostic marker in laryngeal cancer.

17.
Oncol Rep ; 38(4): 2096-2104, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28765921

RESUMO

Livin, a member of the inhibitor of apoptosis protein (IAP) family, is expressed at a high level in lung adenocarcinoma and influences the progression of cancer, and its response to chemotherapy and radiotherapy. Aberrant microRNA (miRNA) expression has also been associated with cancer initiation and development. However, the clinical significance of Livin and its relationship with miRNAs in lung adenocarcinoma are still unclear. In the present study, the expression level of Livin in 90 pairs of lung adenocarcinoma and their adjacent tissues were detected by immunohistochemistry staining. Spearman correlation and Kaplan-Meier, univariate and multivariate analyses were applied to evaluate the correlation between the expression of Livin and clinical characteristics. With the integration of bioinformatics analysis and dual-luciferase reporter gene assays, we identified the miRNA that can target Livin mRNA. The functional effects of miRNA-mediated Livin knockdown were assessed by Cell Counting Kit-8 (CCK-8) and apoptosis assays, and cell cycle analysis. The present study revealed that Livin was upregulated in lung adenocarcinoma tissues and may be associated with the poor prognosis in lung adenocarcinoma patients. The overexpression of Livin is partly caused by the downregulation of miR-198. Further exploration revealed that miRNA-198-mediated silencing of Livin significantly inhibited cell growth and enhanced apoptosis of A549 cells, accompanied by marked upregulation of caspase-3. Finally, we observed that the miR-198 overexpression and Livin neutralization had similar effects on improving cisplatin chemosensitivity in A549 cells. Overall, these findings suggest that Livin has the potential to become a biomarker for predicting the prognosis of lung adenocarcinoma and may provide a promising strategy for assisting chemotherapy of lung adenocarcinoma through the miR-198/Livin/caspase-3 regulatory network.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Adenocarcinoma/metabolismo , Proteínas Inibidoras de Apoptose/biossíntese , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/biossíntese , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Humanos , Proteínas Inibidoras de Apoptose/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , Prognóstico , Regulação para Cima
18.
Cancer Med ; 6(6): 1389-1398, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28485541

RESUMO

YY1 is a key transcription factor and plays different roles in various cancers. However, role and mechanism of YY1 in laryngeal cancer are still unknown. YY1 and MYCT1 mRNA and protein levels were detected by Real-time RT-PCR and Western Blot methods, respectively. Binding of YY1 to MYCT1 promoter was predicted and confirmed by bioinformatics and chromatin immunoprecipitation assays, respectively. MYCT1 promoter activity was assessed by dual luciferase assay system. Laryngeal cancer cell proliferation, migration, and apoptosis were evaluated by cell viability, colony formation, cell scratch assay, transwell assay, and flow cytometry methods, respectively. YY1 and MYCT1 were upregulated and downregulated at transcriptional level in laryngeal cancer, respectively, which showed a negative correlation between YY1 and MYCT1 expression in laryngeal cancer. Significantly higher expression of YY1 and lower expression of MYCT1 were found in laryngeal cancer tissues of patients with lymphatic metastasis than those without metastasis.YY1 directly bound to MYCT1 promoter region and inhibited its promoter activity. YY1 silence had similar biological functions as MYCT1 overexpression in repressiveness of proliferation and migration, and promotion of apoptosis in laryngeal cancer cells. However, the effects of YY1 silence were recovered by MYCT1 knockdown. YY1 promotes proliferation and migration with suppression of apoptosis via directly inhibiting MYCT1 in laryngeal cancer cells, suggesting that YY1 is a useful target as a potential oncogene in laryngeal cancer development and progression.


Assuntos
Neoplasias Laríngeas , Proteínas Nucleares , Fator de Transcrição YY1 , Apoptose , Carcinogênese , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patologia , Metástase Linfática , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
19.
Oncotarget ; 8(9): 14708-14718, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28122350

RESUMO

miR-27a regulates cell differentiation in a variety of diseases. However, whether and how miR-27a participates in laryngeal cancer cell differentiation remains unknown. Therefore, we explored role and molecular mechanism of miR-27a in laryngeal cancer differentiation in the study. We found that miR-27a expression was inversely correlated with laryngeal cancer differentiation degree based on the clinical pathological diagnosis of each patient. miR-27 asignificantly rescued differentiation and inhibited ß-catenin, LEF1, OCT4 and SOX2 in Wnt/ß-catenin pathway in all-trans-retinoic acid (ATRA)-induced laryngeal cancer cells. Bindings of RARα to miR-27a and miR-27a to GSK-3ß were confirmed by ChIP and Luciferase reporter assays, respectively. In conclusion, miR-27a is a negative regulator in laryngeal cancer differentiation. RARα-mediated miR-27a transcriptional inactivation releases the inhibition of miR-27a on GSK-3ß leading to laryngeal cancer differentiation through GSK-3ß-involved Wnt/ß-catenin pathway, suggesting that miR-27a is a usefully therapeutic target at least in ATRA-induced laryngeal cancer differentiation.


Assuntos
Diferenciação Celular/genética , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Neoplasias Laríngeas/genética , MicroRNAs/genética , Via de Sinalização Wnt/genética , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patologia , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Masculino , Pessoa de Meia-Idade , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Tretinoína/farmacologia , beta Catenina/genética , beta Catenina/metabolismo
20.
Oncotarget ; 8(3): 4460-4470, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27965458

RESUMO

PURPOSE: LncRNA HOTAIR plays an important role in many cancer. Several studies have shown that some HOTAIR SNPs might be associated with tumor risk in case-control studies, but the results are inconsistent and inconclusive. Therefore, it is necessary to better evaluate association between the HOTAIR SNPs and the risk of cancer. RESULTS: rs920778, rs7958904 and rs874945 but not rs4759314 and rs1899663 loci were significantly related to cancer risk, among of which rs920778 and rs874945 increased and rs7958904 decreased cancer risk, respectively. Moreover, rs920778 is significantly susceptible in both Asian population and digestive cancer risks. MATERIALS AND METHODS: Data were collected from PubMed, Embase and Web of Science. A total of 11 case-control studies were selected for the quantitative analysis. Software Stata (Version 12) was used to calculate Odds ratios (ORs) and 95% confidence intervals (CIs) to evaluate the strength of the associations. Subgroup analysis, sensitivity analysis, and publication bias were also performed. Five HOTAIR SNPs were finally enrolled in the study. CONCLUSIONS: HOTAIR SNP rs920778, rs7958904 and rs874945 are susceptible to cancer risk. SNP rs920778 is also a useful risk factor in evaluation of Asian population and digestive cancer. In addition, the cancer risk SNP rs874945 is first reported in the meta-analysis.


Assuntos
Neoplasias/genética , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , Povo Asiático/genética , Neoplasias do Sistema Digestório/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Razão de Chances
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA