Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 658: 913-922, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157615

RESUMO

Thin-film sensors are essential for real-time monitoring of components in high-temperature environments. Traditional fabrication methods often involve complicated fabrication steps or require prolonged high-temperature annealing, limiting their practical applicability. Here, we present an approach using direct ink writing and laser scanning (DIW-LS) to fabricate high-temperature functional thin films. An indium tin oxide (ITO)/preceramic polymer (PP) ink suitable for DIW was developed. Under LS, the ITO/PP thin film shrank in volume. Meanwhile, the rapid pyrolysis of PP into amorphous precursor-derived ceramic (PDC) facilitated the faster sintering of ITO nanoparticles and improved the densification of the thin film. This process realized the formation of a conductive network of interconnected ITO nanoparticles. The results show that the ITO/PDC thin film exhibits excellent stability, with a drift rate of 4.7 % at 1000 °C for 25 h, and withstands temperatures up to 1250 °C in the ambient atmosphere. It is also sensitive to strain, with a maximum gauge factor of -6.0. As a proof of concept, we have used DIW-LS technology to fabricate a thin-film heat flux sensor on the surface of the turbine blade, capable of measuring heat flux densities over 1 MW/m2. This DIW-LS process provides a viable approach for the integrated, rapid, and flexible fabrication of thin film sensors for harsh environments.

2.
ACS Appl Mater Interfaces ; 15(41): 48395-48405, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37801478

RESUMO

A high-temperature thin/thick-film strain gauge (TFSG) shows development prospects for in situ strain monitoring of hot-end components due to their small perturbations, no damage, and fast response. Direct ink writing (DIW) 3D printing is an emerging and facile approach for the rapid fabrication of TFSG. However, TFSGs prepared based on 3D printing with both high thermal stability and low temperature coefficient of resistance (TCR) over a wide temperature range remain a great challenge. Here, we report a AgPd TFSG with a glass-ceramic protective layer based on DIW. By encapsulating the AgPd sensitive layer and regulating the Pd content, the AgPd TFSG demonstrated a low TCR (191.6 ppm/°C) from 50 to 800 °C and ultrahigh stability (with a resistance drift rate of 0.14%/h at 800 °C). Meanwhile, the achieved specifications for strain detection included a strain sensing range of ±500 µÎµ, fast response time of 153 ms, gauge factor of 0.75 at 800 °C, and high durability of >8000 cyclic loading tests. The AgPd TFSG effectively monitors strain in superalloys and can be directly deposited onto cylindrical surfaces, demonstrating the scalability of the presented approach. This work provides a strategy to develop TFSGs for in situ sensing of complex curved surfaces in harsh environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA