Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 134: 112259, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749336

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease. Neuronal calcium overload plays an important role in Aß deposition and neuroinflammation, which are strongly associated with AD. However, the specific mechanisms by which calcium overload contributes to neuroinflammation and AD and the relationship between them have not been elucidated. Phospholipase C (PLC) is involved in regulation of calcium homeostasis, and CN-NFAT1 signaling is dependent on intracellular Ca2+ ([Ca2+]i) to regulate transcription of genes. Therefore, we hypothesized that the PLC-CN-NFAT1 signaling might mediate the interaction between Aß and inflammation to promote neuronal injury in AD. In this experiment, the results showed that the levels of Aß, IL-1ß and [Ca2+]i in the hippocampal primary neurons of APP/PS1 mice (APP neurons) were significantly increased. IL-1ß exposure also significantly increased Aß and [Ca2+]i in HT22 cells, suggesting a close association between Aß and IL-1ß in the development of AD. Furthermore, PLC activation induced significant calcium homeostasis imbalance, cell apoptosis, Aß and ROS production, and significantly increased expressions of CN and NFAT1, while PLC inhibitor significantly reversed these changes in APP neurons and IL-1ß-induced HT22 cells. Further results indicated that PLC activation significantly increased the expressions of NOX2, APP, BACE1, and NCSTN, which were inhibited by PLC inhibitor in APP neurons and IL-1ß-induced HT22 cells. All indications point to a synergistic interaction between Aß and IL-1ß by activating the PLC-CN-NFAT1 signal, ultimately causing a vicious cycle, resulting in neuronal damage in AD. The study may provide a new idea and target for treatment of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Hipocampo , Interleucina-1beta , Fatores de Transcrição NFATC , Neurônios , Transdução de Sinais , Fosfolipases Tipo C , Animais , Hipocampo/metabolismo , Hipocampo/patologia , Interleucina-1beta/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fatores de Transcrição NFATC/metabolismo , Camundongos , Fosfolipases Tipo C/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Calcineurina/metabolismo , Camundongos Transgênicos , Cálcio/metabolismo , Linhagem Celular , Humanos , Células Cultivadas , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA