Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sheng Li Xue Bao ; 76(3): 407-417, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38939935

RESUMO

Noise, as an unavoidable stress (pressure) source in the modern life, affects animals in many ways, both behaviorally and physiologically. Behavioral changes may be driven by changes in hormone secretion in animals. When animals face with noise stress, the neuroendocrine systems, mainly the hypothalamic-pituitary-adrenal (HPA) axis, are activated, which promotes the secretion and release of stress hormones, and then leads to a series of behavioral changes. The behavioral changes can be easily observed, but the changes in physiological indicators such as hormone levels need to be accurately measured. Currently, many studies have measured the variations of stress hormone levels in animals under different noise conditions. Taking glucocorticoid as an example, this paper summarizes the different measurement methods of stress hormones, especially the non-invasive measurement methods, and compares the advantages and shortcomings of them. It provides a variety of measurement choices for the study of related issues, and also helps us to further understand the sources of animal stress, in order to provide a better habitat for animals.


Assuntos
Sistema Hipotálamo-Hipofisário , Ruído , Sistema Hipófise-Suprarrenal , Estresse Fisiológico , Animais , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Estresse Fisiológico/fisiologia , Glucocorticoides/metabolismo , Estresse Psicológico/fisiopatologia
2.
Sheng Li Xue Bao ; 74(3): 489-494, 2022 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-35770646

RESUMO

High level noise can damage cochlear hair cells, auditory nerve and synaptic connections between cochlear hair cells and auditory nerve, resulting in noise-induced hearing loss (NIHL). Recent studies have shown that animal cochleae have circadian rhythm, which makes them different in sensitivity to noise throughout the day. Cochlear circadian rhythm has a certain relationship with brain-derived neurotrophic factor and glucocorticoids, which affects the degree of hearing loss after exposure to noise. In this review, we summarize the research progress of the regulation of cochlear sensitivity to noise by circadian rhythm and prospect the future research direction.


Assuntos
Ritmo Circadiano , Perda Auditiva Provocada por Ruído , Animais , Limiar Auditivo , Cóclea , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Células Ciliadas Auditivas , Ruído/efeitos adversos
3.
Artigo em Inglês | MEDLINE | ID: mdl-29876656

RESUMO

During hunting, the duration and amplitude of bat's echolocation sounds co-vary. Our previous studies showed the inferior collicular neurons of constant frequency-frequency modulation (CF-FM) bat discharged as single-on (SO) or double-on (DO) responders when stimulated with behavior related CF-FM sounds. However, how the co-varied sound duration and amplitude modulate the response properties of SO and DO neurons were understudied. Therefore, we investigated amplitude- and duration-sensitivity in 121 neurons isolated in the inferior colliculus of CF-FM bat, Pratt's roundleaf bat (Hipposideros pratti). Responses of SO and DO neurons were obtained by in vivo intracellular recordings and examined for different stimulus amplitudes and durations. Our results revealed that response patterns of SO neurons were unaffected by changes in amplitude and duration of CF-FM stimuli. However, the excitability of DO neurons increased with prolonged CF duration and higher amplitude of CF-FM stimuli. These data suggested that the invariance of SO neurons play a key role in detection of Doppler shift and glint-like changes of frequency and amplitude induced by wingbeats of insects. In contrast, amplitude- and duration-sensitivity of DO neurons to CF-FM stimuli is consistent with the systematic changes in these signal parameters during sequential phases of foraging in CF-FM bats.


Assuntos
Quirópteros/fisiologia , Ecolocação/fisiologia , Audição/fisiologia , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Animais , Feminino , Masculino , Potenciais da Membrana
4.
PLoS One ; 12(9): e0184097, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28863144

RESUMO

In the auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from the lower auditory nuclei, contralateral IC, and auditory cortex (AC), and then uploads these inputs to the thalamus and cortex. Meanwhile, the AC modulates the sound signal processing of IC neurons, including their latency (i.e., first-spike latency). Excitatory and inhibitory corticofugal projections to the IC may shorten and prolong the latency of IC neurons, respectively. However, the synaptic mechanisms underlying the corticofugal latency modulation of IC neurons remain unclear. Thus, this study probed these mechanisms via in vivo intracellular recording and acoustic and focal electric stimulation. The AC latency modulation of IC neurons is possibly mediated by pre-spike depolarization duration, pre-spike hyperpolarization duration, and spike onset time. This study suggests an effective strategy for the timing sequence determination of auditory information uploaded to the thalamus and cortex.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Quirópteros/fisiologia , Estimulação Elétrica , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Acústica , Animais , Percepção Auditiva/fisiologia , Peso Corporal , Córtex Cerebral/fisiologia , Ecolocação , Feminino , Masculino , Som , Tálamo/fisiologia
5.
Braz. j. otorhinolaryngol. (Impr.) ; 83(1): 80-87, Jan.-Feb. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839395

RESUMO

Abstract Introduction Currently, there is limited information about the relationship between manganese superoxide dismutase (sod2) c47t polymorphism and susceptibility to noise-induced hearing loss (NIHL). Objective The aim of this meta-analysis was to clarify the association between SOD2 C47T polymorphism and NIHL. Methods A search in PubMed and Web of Science was performed to collect data. All full-text, English-written studies containing sufficient and complete case-and-control data about the relationship between SOD2 C47T polymorphism and NIHL were included. Three eligible studies, comprising 1094 subjects, were identified. pooled odds ratios (ORs) and 95% confidence intervals (CI) were calculated to evaluate the strength of the association between SOD2 C47T polymorphism and NIHL. Results No significant association between C47T polymorphism and risk of NIHL was found with the following combinations: T vs. C (OR = 0.83; 95% CI = 0.63–1.09); TT vs. CC (OR = 0.49; 95% CI = 0.22–1.09); CT vs. CC (OR = 0.54; 95% CI = 0.25–1.17); TT vs. CC + CT (OR = 0.82; 95% CI = 0.50–1.32); CC vs. TT + TC (OR = 0.49; 95% CI = 0.23–1.04). However, in subgroup analysis, a significant association was found for TT vs. CC + CT (OR = 0.77; 95% CI = 0.42–1.41) in the Chinese population. Conclusion The present meta-analysis suggests that SOD2 C47T polymorphism is significantly associated with increased risk of NIHL in the Chinese population. Further large and well-designed studies are needed to confirm this association.


Resumo Introdução Atualmente, são limitadas as informações acerca da relação entre o polimorfismo C47T de superóxido dismutase 2 (SOD2) dependente de manganês e suscetibilidade à perda auditiva induzida pelo ruído (PAIR). Objetivo O objetivo desta metanálise foi esclarecer a associação entre o polimorfismo C47T de SOD2 e PAIR. Método Foram feitas buscas no PubMed e Web of Science para coleta de dados. Foram incluídos todos os estudos no idioma inglês, com dados suficientes e completos de casos e controles sobre a relação entre o polimorfismo C47T de SOD2 e PAIR. Foram identificados três estudos qualificados, que abrangeram 1.094 indivíduos. Foram calculadas as razões das chances (odds ratio, OR) acumuladas e intervalos de confiança (IC) de 95% para que fosse avaliada a potência da associação entre o polimorfismo C47T de SOD2 e PAIR. Resultados Não foi encontrada uma associação significativa entre o polimorfismo C47T de SOD2 e risco de PAIR com as seguintes combinações: T vs. C (OR = 0,83, IC 95% = 0,63-1,09); TT vs. CC (OR = 0,49, IC 95% = 0,22-1,09); CT vs. CC (OR = 0,54, IC 95% = 0,25-1,17); TT vs. CC + CT (OR = 0,82, IC 95% = 0,50-1,32); CC vs. TT + TC (OR = 0,49, IC 95% = 0,23-1,04). Contudo, na análise de subgrupo, foi encontrada uma associação significativa para TT vs. CC + CT (OR = 0,77, 95% CI = 0,42-1.41) na população chinesa. Conclusão A presente metanálise sugere que o polimorfismo C47T de SOD2 demonstra associação significativa com maior risco de PAIR na população chinesa. Há necessidade de novos estudos de grande porte bem concebidos, para confirmação dessa associação.


Assuntos
Humanos , Polimorfismo Genético/genética , Superóxido Dismutase/genética , Predisposição Genética para Doença/genética , Perda Auditiva Provocada por Ruído/genética
6.
Physiol Behav ; 171: 236-242, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28108331

RESUMO

The Doppler-shift compensation (DSC) behavior of constant frequency - frequency modulation (CF-FM) bat (Hipposideros pratti) is vital for extraction and analysis of echo information. This type of behavior affects the recovery cycles of sound-sensitive neurons, but their precise relationship remains unclear. In this study, we investigated the effects of DSC on the recovery cycles of inferior collicular (IC) neurons in H. pratti. We simulated the pulse-echo pair in bats by changing the emitted pulse frequency and keeping the echo frequency constant during DSC in echolocation. The neuronal recovery cycles of IC neurons are categorized into four types: unrecovered, monotonic, single-peak, and multi-peak. The recovery cycle of IC neurons shortens after DSC; moreover, the amount of neurons with multi-peak recovery cycle increases and concentrates in the short recovery area. This paper also discusses the possible neural mechanisms and their biological relevance to different phases of bat predation behavior.


Assuntos
Potenciais de Ação/fisiologia , Percepção Auditiva/fisiologia , Ecolocação/fisiologia , Colículos Inferiores/citologia , Neurônios/fisiologia , Som , Estimulação Acústica , Análise de Variância , Animais , Quirópteros/fisiologia , Recuperação de Função Fisiológica
7.
Braz J Otorhinolaryngol ; 83(1): 80-87, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27161188

RESUMO

INTRODUCTION: Currently, there is limited information about the relationship between manganese superoxide dismutase (sod2) c47t polymorphism and susceptibility to noise-induced hearing loss (NIHL). OBJECTIVE: The aim of this meta-analysis was to clarify the association between SOD2 C47T polymorphism and NIHL. METHODS: A search in PubMed and Web of Science was performed to collect data. All full-text, English-written studies containing sufficient and complete case-and-control data about the relationship between SOD2 C47T polymorphism and NIHL were included. Three eligible studies, comprising 1094 subjects, were identified. pooled odds ratios (ORs) and 95% confidence intervals (CI) were calculated to evaluate the strength of the association between SOD2 C47T polymorphism and NIHL. RESULTS: No significant association between C47T polymorphism and risk of NIHL was found with the following combinations: T vs. C (OR=0.83; 95% CI=0.63-1.09); TT vs. CC (OR=0.49; 95% CI=0.22-1.09); CT vs. CC (OR=0.54; 95% CI=0.25-1.17); TT vs. CC+CT (OR=0.82; 95% CI=0.50-1.32); CC vs. TT+TC (OR=0.49; 95% CI=0.23-1.04). However, in subgroup analysis, a significant association was found for TT vs. CC+CT (OR=0.77; 95% CI=0.42-1.41) in the Chinese population. CONCLUSION: The present meta-analysis suggests that SOD2 C47T polymorphism is significantly associated with increased risk of NIHL in the Chinese population. Further large and well-designed studies are needed to confirm this association.


Assuntos
Predisposição Genética para Doença/genética , Perda Auditiva Provocada por Ruído/genética , Polimorfismo Genético/genética , Superóxido Dismutase/genética , Humanos
8.
Neural Plast ; 2016: 4195391, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27057363

RESUMO

In the auditory pathway, the commissure of the inferior colliculus (IC) interconnects the two ICs on both sides of the dorsal midbrain. This interconnection could mediate an interaction between the two ICs during sound signal processing. The intercollicular effects evoked by focal electric stimulation for 30 min could inhibit or facilitate auditory responses and induce plastic changes in the response minimum threshold (MT) of IC neurons. Changes in MT are dependent on the best frequency (BF) and MT difference. The MT shift is larger in IC neurons with BF differences ≤2 kHz than in those with BF differences >2 kHz. Moreover, MTs that shift toward electrically stimulated IC neurons increase with the increasing MT difference between the two ICs. The shift in MT lasts for a certain period of time and then returns to previous levels within ~150 min. The collicular interactions are either reciprocal or unilateral under alternate stimulating and recording conditions in both ICs. Our results suggest that intercollicular effects may be involved in the acoustic experience-dependent plasticity of the MT of IC neurons.


Assuntos
Vias Auditivas/fisiologia , Limiar Auditivo/fisiologia , Colículos Inferiores/fisiologia , Plasticidade Neuronal/fisiologia , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Feminino , Masculino , Camundongos , Neurônios/fisiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-26026915

RESUMO

In constant frequency-frequency modulation (CF-FM) bats, the CF-FM echolocation signals include both CF and FM components, yet the role of such complex acoustic signals in frequency resolution by bats remains unknown. Using CF and CF-FM echolocation signals as acoustic stimuli, the responses of inferior collicular (IC) neurons of Hipposideros armiger were obtained by extracellular recordings. We tested the effect of preceding CF or CF-FM sounds on the shape of the frequency tuning curves (FTCs) of IC neurons. Results showed that both CF-FM and CF sounds reduced the number of FTCs with tailed lower-frequency-side of IC neurons. However, more IC neurons experienced such conversion after adding CF-FM sound compared with CF sound. We also found that the Q 20 value of the FTC of IC neurons experienced the largest increase with the addition of CF-FM sound. Moreover, only CF-FM sound could cause an increase in the slope of the neurons' FTCs, and such increase occurred mainly in the lower-frequency edge. These results suggested that CF-FM sound could increase the accuracy of frequency analysis of echo and cut-off low-frequency elements from the habitat of bats more than CF sound.


Assuntos
Percepção Auditiva/fisiologia , Quirópteros/fisiologia , Ecolocação/fisiologia , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Feminino , Masculino
10.
Sheng Li Xue Bao ; 67(2): 134-42, 2015 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-25896043

RESUMO

By using echolocation system echolocating bats have the ability to complete the tasks of detection, localization and classification of the targets. Among the three fundamental tasks, the study of how bats use echolocation to classify targets was investigated later, and most of previous studies were focused on the analysis of simple targets. However, the echoes that bats received are mostly returning from complex objects or structures, which are so complex that they must be described by stochastic statistical approach. In recent years, the study on classification of complex echoes returning from different plants in frequency modulation (FM) bats has made significant progress. In this review article, we will briefly introduce and comment on some progress of studies based on the behavioral evidence, acoustic cues, relevant classification models, and neural bases underlying different classification cues to distinguish plants through classification of echoes in FM bats.


Assuntos
Quirópteros/fisiologia , Ecolocação , Animais , Fenômenos Fisiológicos do Sistema Nervoso
11.
Zool Stud ; 54: e44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-31966131

RESUMO

BACKGROUND: Previousstudies of sexual dimorphism in the echolocation pulses of the constant frequency-frequency modulating (CF-FM) bat have been mainly concentrated on the difference in the frequency of the CF component of the predominant second harmonic while neglected other pulse parameters. However, recent studies have shown that other pulse parameters of the predominant second harmonic are also biologically significant to the bat hunting. To complement and advance these studies, we have examined sexual dimorphism of multiple parameters (e.g., duration, frequency, bandwidth of the FM component, and repetition rate of emitted pulses) of the echolocation pulses of the CF-FM bat, Hipposideros pratti. RESULTS: Our studies of the predominant second harmonic show that on average the male bat has higher frequency of the CF component, wider FM bandwidth, and higher pulse repetition rate while the female bat has longer duration of the CF and FM components. CONCLUSIONS: Theseobservations suggest that bats may potentially use this sexual dimorphism in echolocation pulse parameters for social communication and species and sex identification.

12.
Neurosci Lett ; 576: 97-101, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24915297

RESUMO

Previous studies show that when stimulated with constant frequency-frequency modulated (CF-FM) sounds, the inferior collicular neurons of the leaf-nosed bat, Hipposideros armiger, either discharge impulses only to the CF component (single-on, SO neurons) or to both CF and FM components (double-on, DO neurons). In this study, we specifically determine the role of the FM component in shaping the number of impulses and response latency of these two types of neurons in response to CF-FM sounds. Adding the FM component to the CF sounds significantly decreases the number of impulses of both SO and DO neurons but shortens the response latency of DO neurons in response to the CF component of the CF-FM sounds. The possible neural mechanisms underlying these seemingly paradoxical observations are briefly discussed based on our preliminary intracellular recording studies. Biological relevance of these findings in relation to different phases of bats' hunting is also discussed.


Assuntos
Quirópteros/fisiologia , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Som , Estimulação Acústica , Animais , Ecolocação/fisiologia , Colículos Inferiores/citologia , Tempo de Reação
13.
Sheng Li Xue Bao ; 65(3): 329-37, 2013 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-23788191

RESUMO

It has been reported that the frequency modulation (FM) or FM direction sensitivity and forward masking of central auditory neurons are related with the neural inhibition, but there are some arguments, because no direct evidence of inhibitory synaptic input was obtained in previous studies using extracellular recording. In the present study, we studied the relation between FM direction sensitivity and forward masking of the inferior collicular (IC) neurons using in vivo intracellular recordings in 20 Mus musculus Km mice. Thirty seven with complete data among 93 neurons were analyzed and discussed. There was an inhibitory area which consisted of inhibitory postsynaptic potentials (IPSP) at high frequency side of frequency tuning of up-sweep FM (FMU) sensitive neurons (n = 12) and at low frequency side of frequency tuning of down-sweep FM (FMD) selective neurons (n = 8), while there was no any inhibitory area at both sides of frequency tuning of non-FM sweep direction (FMN) sensitive neurons (n = 17). Therefore, these results show that the inhibitory area at low or high frequency side of frequency tuning is one of the mechanisms for forming FM sweep direction sensitivity of IC neurons. By comparison of forward masking produced by FMU and FMD sound stimuli in FMU, FMD and FMN neurons, the selective FM sounds could produce stronger forward masking than the non-selective in FMU and FMD neurons, while there was no forward masking difference between FMU and FMD stimuli in the FMN neurons. We suggest that the post-action potential IPSP is a potential mechanism for producing stronger forward masking in FMU and FMD neurons.


Assuntos
Colículos Inferiores/citologia , Potenciais Pós-Sinápticos Inibidores , Neurônios/citologia , Estimulação Acústica , Potenciais de Ação , Animais , Camundongos
14.
Neurosci Bull ; 29(5): 541-52, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23749626

RESUMO

The discharge patterns of neurons in auditory centers encode information about sounds. However, few studies have focused on the synaptic mechanisms underlying the shaping of discharge patterns using intracellular recording techniques. Here, we investigated the discharge patterns of inferior collicular (IC) neurons using intracellular recordings to further elucidate the mechanisms underlying the shaping of discharge patterns. Under in vivo intracellular recording conditions, recordings were obtained from 66 IC neurons in 18 healthy adult mice (Mus musculus, Km) under free field-stimulation. Fifty-eight of these neurons fi red bursts of action potentials (APs) to auditory stimuli and the remaining eight just generated local responses such as excitatory (n = 4) or inhibitory (n = 4) postsynaptic potentials. Based on the APs and subthreshold responses, the discharge patterns were classified into seven types: phasic (24/58, 41.4%), phasic burst (8/58,13.8%), pauser (4/58, 6.9%), phasic-pauser (1/58, 1.7%), chopper (2/58, 3.4%), primary-like tonic (14/58, 24.1%) and sound-induced inhibitory (5/58,8.6%). We concluded that (1) IC neurons exhibit at least seven distinct discharge patterns; (2) inhibition participates in shaping the discharge pattern of most IC neurons and plays a role in sculpting the pattern, except for the primary-like tonic pattern which was not shaped by inhibition; and (3) local neural circuits are the likely structural basis that shapes the discharge patterns of IC neurons and can be formed either in the IC or in lower-level auditory structures.


Assuntos
Potenciais de Ação/fisiologia , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Percepção Auditiva/fisiologia , Camundongos , Técnicas de Patch-Clamp
15.
PLoS One ; 7(7): e41311, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22911778

RESUMO

In the ascending auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and from the auditory cortex. All these connections make the IC a major center for subcortical temporal and spectral integration of auditory information. In this study, we examine bilateral collicular interaction in modulating amplitude-domain signal processing using electrophysiological recording, acoustic and focal electrical stimulation. Focal electrical stimulation of one (ipsilateral) IC produces widespread inhibition (61.6%) and focused facilitation (9.1%) of responses of neurons in the other (contralateral) IC, while 29.3% of the neurons were not affected. Bilateral collicular interaction produces a decrease in the response magnitude and an increase in the response latency of inhibited IC neurons but produces opposite effects on the response of facilitated IC neurons. These two groups of neurons are not separately located and are tonotopically organized within the IC. The modulation effect is most effective at low sound level and is dependent upon the interval between the acoustic and electric stimuli. The focal electrical stimulation of the ipsilateral IC compresses or expands the rate-level functions of contralateral IC neurons. The focal electrical stimulation also produces a shift in the minimum threshold and dynamic range of contralateral IC neurons for as long as 150 minutes. The degree of bilateral collicular interaction is dependent upon the difference in the best frequency between the electrically stimulated IC neurons and modulated IC neurons. These data suggest that bilateral collicular interaction mainly changes the ratio between excitation and inhibition during signal processing so as to sharpen the amplitude sensitivity of IC neurons. Bilateral interaction may be also involved in acoustic-experience-dependent plasticity in the IC. Three possible neural pathways underlying the bilateral collicular interaction are discussed.


Assuntos
Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Colículos Inferiores/fisiologia , Estimulação Acústica , Animais , Limiar Auditivo/fisiologia , Feminino , Masculino , Camundongos , Neurônios/fisiologia , Fatores de Tempo
16.
Neurosci Lett ; 517(1): 13-7, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22507237

RESUMO

In the ascending auditory pathway, the commissure of the inferior colliculus (IC) interconnects the two ICs and may therefore mediate bilateral collicular interaction during sound processing. In this study, we show that electrically stimulates one IC produces facilitation or suppression of acoustically evoked response of neurons in the other IC. The facilitated IC neurons (14%) are located in bilateral corresponding frequency laminae while the suppressed IC neurons (86%) are widespreadly located in bilateral different frequency laminae. Whereas induced facilitation increases the dynamic range but decreases the slope of the rate-amplitude function of modulated IC neurons, induced suppression produces the opposite effect. As a result, bilateral collicular facilitation increases the sensitivity of modulated IC neurons to a wider range of sound amplitude while bilateral collicular suppression improves the sensitivity of modulated IC neurons to minor change in sound amplitude over a narrower range of sound amplitude. The degree of suppression is significantly greater for suppressed IC neurons located in bilateral corresponding frequency laminae than in non-corresponding frequency laminae. We suggest that bilateral collicular interaction through the commissure of the IC may play a role in modulation of amplitude sensitivity and in shaping the binaural property of IC neurons.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Colículos Inferiores/fisiologia , Estimulação Acústica , Animais , Limiar Auditivo , Estimulação Elétrica , Feminino , Masculino , Camundongos , Neurônios/fisiologia
17.
Brain Res ; 1385: 114-26, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21338589

RESUMO

Our previous study showed that when stimulated with constant frequency-frequency modulation (CF-FM) sounds, neurons in the central nucleus of the inferior colliculus of the CF-FM bat, Hipposideros armiger, either only discharged impulses to the onset of CF-FM sounds (76%, single-on neurons) or to the onset of both CF and FM components of CF-FM sounds (24%, double-on neuron) (Fu et al., 2010). The present paper reports the recovery cycles of these two types of neurons using paired CF, FM and CF-FM sounds as stimuli. Both types of neurons had similar recovery cycle for CF sounds but had the shortest recovery cycle for FM sounds. Whereas single-on neurons had similar recovery cycle for CF and CF-FM sounds, double-on neurons had longer recovery cycle for CF sounds than for CF-FM sounds. In addition, double-on neurons had significantly shorter recovery cycles than single-on neurons for FM and CF-FM sounds. Most neurons did not respond to the second sound when each pair of sounds overlapped. However, when stimulated with paired CF-FM sounds, 3 single-on and 7 double-on neurons discharged to the second sound even when both sounds overlapped. As such, they had "cyclic" recovery cycles that varied between maximum and minimum with inter-pulse intervals. Possible mechanisms underlying the different recovery cycles of these neurons are proposed. Possible biological significance of these neurons in relation to responding to varied pulse repetition rate during hunting is discussed.


Assuntos
Estimulação Acústica/métodos , Quirópteros/fisiologia , Ecolocação/fisiologia , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Feminino , Colículos Inferiores/citologia , Masculino , Neurônios/classificação
18.
Sheng Li Xue Bao ; 62(5): 469-77, 2010 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-20945051

RESUMO

The effects of sound duration and sound pattern on the recovery cycles of inferior collicular (IC) neurons in constant frequency-frequency modulation (CF-FM) bats were explored in this study. Five leaf-nosed bats, Hipposideros armiger (4 males, 1 female, 43-50 g body weight), were used as subjects. The extracellular responses of IC neurons to paired sound stimuli with different duration and patterns were recorded, and the recovery was counted as the ratio of the second response to the first response. Totally, 169 sound-sensitive IC neurons were recorded in the experiment. According to the interpulse interval (IPI) of paired sounds when neurons reached 50% recovery (50% IPI), the recovery cycles of these IC neurons were classified into 3 types: fast recovery (F, the 50% IPI was less than 15 ms), short recovery (S, the 50% IPI was between 15.1 and 30 ms) and long recovery (L, the 50% IPI was more than 30 ms). When paired CF stimuli with 2 ms duration was used, the ratio of F neurons was 32.3%, and it decreased to 18.1% and 18.2% respectively when 5 and 7 ms CF stimuli were used. The ratios of S and L neurons were 41.5%, 33.7%, 29.1% and 26.2%, 48.2%, 52.7% respectively when 2, 5 and 7 ms CF stimuli were used. The average 50% IPI determined after stimulation with paired 2 ms, 5 ms and 7 ms CF sounds were (30.2 ± 27.6), (39.9 ± 29.1) and (49.4 ± 34.7) ms, respectively, and the difference among them was significant (P< 0.01). When the stimuli of paired 2 ms CF sounds were shifted to paired 2 ms FM sounds, the proportion of F, S and L neurons changed from 32.3%, 41.5%, 26.2% to 47.7%, 24.6%, 27.7%, respectively, and the average 50% IPI decreased from (30.2 ± 27.6) to (23.9 ± 19.0) ms (P< 0.05, n = 65). When paired 5+2 ms CF-FM pulses were used instead of 7 ms CF sounds, the proportion of F, S and L neurons changed from 18.2%, 29.1%, 52.7% to 29.1%, 27.3%, 43.6%, respectively, and the average 50% IPI decreased from (49.4 ± 34.7) to (36.3 ± 29.4) ms (P< 0.05, n = 55). All these results suggest that the CF and FM components in echolocation signal of CF-FM bats play different roles during bats' hunting and preying on. The FM component of CF-FM signal presenting in the terminal phase can increase the number of F type neurons and decrease the recovery cycles of IC neurons for processing high repetition echo information, which ensures the bat to analyze the target range and surface texture more accurately.


Assuntos
Estimulação Acústica/métodos , Quirópteros/fisiologia , Ecolocação/fisiologia , Colículos Inferiores/fisiologia , Período Refratário Eletrofisiológico/fisiologia , Potenciais de Ação/fisiologia , Animais , Feminino , Colículos Inferiores/citologia , Masculino , Neurônios/classificação , Neurônios/fisiologia
19.
Brain Res ; 1306: 39-52, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19835849

RESUMO

The present study examines the response properties of neurons in the central nucleus of the inferior colliculus (IC) of the CF-FM (constant frequency-frequency-modulated) bat, Hipposideros armiger using CF, FM and CF-FM sounds as stimuli. All 169 IC neurons recorded are tonotopically organized along the dorsoventral axis of the IC. Collicular neurons have V-shaped or upper-threshold frequency tuning curves. Those neurons tuned at the predominant second harmonic have extremely sharp frequency tuning curves and low minimum thresholds. Collicular neurons typically discharge impulses to both CF and FM sounds. However, when stimulated with CF-FM sounds, most (76%) neurons only discharge impulses to the onset of CF-FM sounds (single-on responders). The remaining neurons (24%) discharge impulses to both CF and FM components (double-on responders) of CF-FM sounds. The double-on responders have higher minimum threshold and longer latency to the FM component than to the CF component of CF-FM sounds. Our data show that the FM component of the CF-FM sounds contributes significantly in shaping the discharge pattern, latency and number of impulses of IC neurons. The present study suggests that using CF-FM sounds to study auditory response properties of the CF-FM bat may be essential for a better understanding of echo analysis by the CF-FM in the real world. Because the double-on responders have shorter response latency than single-on responders, we speculate that these two types of responders may be best suited for echo analysis during different phases of hunting.


Assuntos
Percepção Auditiva/fisiologia , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Potenciais de Ação , Animais , Quirópteros , Potenciais Evocados Auditivos , Feminino , Modelos Lineares , Masculino , Microeletrodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA