Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38786825

RESUMO

Nanocrystalline carbonyl iron (CI) particles are promising microwave absorbents at elevated temperature, whereas their excessive grain boundary energy leads to the growth of nanograins and a deterioration in permeability. In this work, we report a strategy to enhance the thermal stability of the grains and microwave absorption of CI particles by doping a SiBaFe alloy. Grain growth was effectively inhibited by the pinning effect of SiBaFe alloy nanoparticles at the grain boundaries. After heat treatment at 600 °C, the grain size of CI particles increased from ~10 nm to 85.1 nm, while that of CI/SiBaFe particles was only 32.0 nm; with the temperature rising to 700 °C, the grain size of CI particles sharply increased to 158.1 nm, while that of CI/SiBaFe particles was only 40.8 nm. Excellent stability in saturation magnetization and microwave absorption was also achieved in CI/SiBaFe particles. After heat treatment at 600 °C, the flaky CI/SiBaFe particles exhibited reflection loss below -10 dB over 7.01~10.11 GHz and a minimum of -14.92 dB when the thickness of their paraffin-based composite was 1.5 mm. We provided a low-cost and efficient kinetic strategy to stabilize the grain size in nanoscale and microwave absorption for nanocrystalline magnetic absorbents working at elevated temperature.

2.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808101

RESUMO

Nanocrystalline soft magnetic alloy powders are promising microwave absorbents since they can work at diverse frequencies and are stable in harsh environments. However, when the alloy powders are in austenite phase, they are out of the screen for microwave absorbents due to their paramagnetic nature. In this work, we reported a strategy to enable strong microwave absorption in nanocrystalline austenite FeCoCr powders by deformation-thermal co-induced ferromagnetism via attritor ball milling and subsequent heat treatment. Results showed that significant austenite-to-martensite transformation in the FeCoCr powders was achieved during ball milling, along with the increase in shape anisotropy from spherical to flaky. The saturation magnetization followed parabolic kinetics during ball milling and rose from 1.43 to 109.92 emu/g after milling for 4 h, while it exhibited a rapid increase to 181.58 emu/g after subsequent heat treatment at 500 °C. A considerable increase in complex permeability and hence magnetic loss capability was obtained. With appropriate modulation of complex permittivity, the resultant absorbents showed a reflection loss of below -6 dB over 8~18 GHz at thickness of 1 mm and superior stability at 300 °C. Our strategy can broaden the material selection for microwave absorbents by involving Fe-based austenite alloys and simply recover the ferromagnetism of industrial products made without proper control of the crystalline phase.

3.
Cell Rep ; 13(7): 1366-1379, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26549449

RESUMO

The central question in stem cell regulation is how the balance between self-renewal and differentiation is controlled at the molecular level. This study uses germline stem cells (GSCs) in the Drosophila ovary to demonstrate that the Drosophila CCR4 homolog Twin is required intrinsically to promote both GSC self-renewal and progeny differentiation. Twin/CCR4 is one of the two catalytic subunits in the highly conserved CCR4-NOT mRNA deadenylase complex. Twin works within the CCR4-NOT complex to intrinsically maintain GSC self-renewal, at least partly by sustaining E-cadherin-mediated GSC-niche interaction and preventing transposable element-induced DNA damage. It promotes GSC progeny differentiation by forming protein complexes with differentiation factors Bam and Bgcn independently of other CCR4-NOT components. Interestingly, Bam can competitively inhibit the association of Twin with Pop2 in the CCR4-NOT complex. Therefore, this study demonstrates that Twin has important intrinsic roles in promoting GSC self-renewal and progeny differentiation by functioning in different protein complexes.


Assuntos
Diferenciação Celular , Proteínas de Drosophila/fisiologia , Ribonucleases/fisiologia , Células-Tronco/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/fisiologia , Proteínas Cdh1/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Células Germinativas/fisiologia , Masculino , Mitose , Ribonucleases/metabolismo , Transdução de Sinais , Nicho de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA