Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Contemp Clin Trials ; 143: 107584, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821260

RESUMO

BACKGROUND: Pilot trials indicate that both a low glycemic load (GL) diet and calorie restriction (CR) can be implemented successfully in people with multiple sclerosis (pMS) and may improve MS symptoms and physical function, but large randomized clinical trials (RCTs) have not yet been conducted. The purpose of this study is to test these interventions alone and in combination to determine their efficacy for improving clinical and patient reported outcomes (PROs) in pMS. METHODS: This 32-week, two-arm, RCT at two centers will randomly assign 100 adults with relapsing-remitting or secondary progressive MS to a low GL diet (n = 50) or a standard GL diet (n = 50). Both diet groups will complete two study phases: a eucaloric phase (16 weeks) and a CR phase (16 weeks). Groceries for the study meal plans will be delivered to participants' homes weekly. The primary outcome is physical function, measured by timed 25-ft walk test. Secondary outcomes are pain, fatigue, mood, and anxiety. DISCUSSION: This will be the most rigorous intervention trial to date of a low GL diet and CR in adults with MS, and among the first to assess the impact of intentional weight loss on MS symptoms. Results will provide valuable insight for recommending dietary change, weight loss, or both to adults with MS. These non-drug interventions pose few risks and have potential to yield significant improvements in MS symptoms. TRIAL REGISTRATION ID: NCT05327322.

2.
J Trauma Acute Care Surg ; 95(2): 197-204, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37072887

RESUMO

OBJECTIVES: Deep venous thrombosis (DVT) causes significant morbidity and mortality after trauma. Recently, we have shown that blood flow patterns at vein valves induce oscillatory stress genes, which maintain an anticoagulant endothelial phenotype that inhibits spontaneous clotting at vein valves and sinuses, is lost in the presence of DVT in human pathological samples, and is dependent on expression of the transcription factor FOXC2. We describe an assay, modifying our mouse multiple injury system, which shows evidence of clinically relevant microthrombosis and hypercoagulability applicable to the study of spontaneous DVT in trauma without requiring direct vascular injury or ligation. Finally, we investigated whether these model findings are relevant to a human model of critical illness by examining gene expression changes by quantitative polymerase chain reaction and immunofluorescence in veins collected from critically ill. METHODS: C57/Bl6 mice were subjected to a modified mouse multiple injury model with liver crush injury, crush and pseudofracture of a single lower extremity, and 15% total blood volume hemorrhage. Serum was assayed for d-dimer at 2, 6, 24, and 48 hours after injury by enzyme-linked immunosorbent assay. For the thrombin clotting assay, veins of the leg were exposed, 100 µL of 1 mM rhodamine (6 g) was injected retro-orbitally, and 450 µg/mL thrombin was then applied to the surface of the vein with examination of real-time clot formation via in vivo immunofluorescence microscopy. Images were then examined for percentage area of clot coverage of visible mouse saphenous and common femoral vein. Vein valve specific knockout of FOXC2 was induced with tamoxifen treatment in PROX1 Ert2Cre FOXC2 fl/fl mice as previously described. Animals were then subjected to a modified mouse multiple injury model with liver crush injury, crush and pseudofracture of a single lower extremity, and 15% total blood volume hemorrhage. Twenty-four hours after injury, we examined the valve phenotype in naive versus multiple injury animals, with and without loss of the FOXC2 gene from the vein valve (FOXC2 del ) via the thrombin assay. Images were then examined for proximity of clot formation to the valve present at the junction of the mouse saphenous, tibial, and superficial femoral vein and presence of spontaneous microthrombi present in the veins before exposure to thrombin. Human vein samples were obtained from excess tissue preserved after harvest for elective cardiac surgery and from organ donors after organ procurement. Sections were submitted for paraffin embedding and then assayed by immunofluorescence for PROX1, FOXC2, thrombomodulin, endothelial protein C receptor, and von Willebrand's factor. All animal studies were reviewed and approved by the Institutional Animal Care and Use Committee, and all human studies reviewed and approved by the institutional review board. RESULTS: After mouse multiple injuries, enzyme-linked immunosorbent assay for d-dimer showed evidence of products of fibrin breakdown consistent with formation of clot related to injury, fibrinolysis, and/or microthrombosis. The thrombin clotting assay demonstrated higher percentage area of vein covered with clot when exposed to thrombin in the multiple injury animals compared with uninjured (45% vs. 27% p = 0.0002) consistent with a phenotype of hypercoagulable state after trauma in our model system. Unmanipulated FoxC2 knockout mice manifest increased clotting at the vein valve as compared with unmanipulated wild type animals. After multiple injuries, wild type mice manifest increase clotting at the vein after thrombin exposure ( p = 0.0033), and equivalent to that of valvular knockout of FoxC2 (FoxC2del), recapitulating the phenotype seen in FoxC2 knockout animals. The combination of multiple injuries and FoxC2 knockout resulted in spontaneous microthrombi in 50% of the animals, a phenotype not observed with either multiple injuries or FoxC2 deficiency alone (χ 2 , p = 0.017). Finally, human vein samples demonstrated the protective vein valve phenotype of increased FOXC2 and PROX1 and showed decreased expression in the critically ill organ donor population by immunofluorescence imaging in organ donor samples. CONCLUSION: We have established a novel model of posttrauma hypercoagulation that does not require direct restriction of venous flow or direct injury to the vessel endothelium to assay for hypercoagulability and can generate spontaneous microthrombosis when combined with valve-specific FOXC2 knockout. We find that multiple injuries induce a procoagulant phenotype that recapitulates the valvular hypercoagulability seen in FOXC2 knockout and, in critically ill human specimens, find evidence for loss of oscillatory shear stress-induced gene expression of FOXC2 and PROX1 in the valvular endothelium consistent with potential loss of DVT-protective valvular phenotype.


Assuntos
Lesões por Esmagamento , Traumatismo Múltiplo , Trombofilia , Trombose , Animais , Humanos , Camundongos , Estado Terminal , Células Endoteliais , Veia Femoral , Fibrinolíticos , Trombina/farmacologia , Trombofilia/etiologia , Trombose/etiologia , Fatores de Transcrição
3.
Spine Deform ; 10(6): 1375-1384, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35699911

RESUMO

PURPOSE: ASD reconstructions are a major, sterile traumatic insult, likely causing perturbations to the immune systems. The immune response to surgery is associated with outcomes. The purpose of this study was to examine for a detectable immune signature associated with ASD surgery. METHODS: Consecutive patients undergoing ASD surgery were approached and enrolled. Peripheral blood was drawn before incision, 4 h after, and 24 h after incision. Blood was stabilized and comprehensive flow cytometric immunophenotyping performed. Leukocyte population frequency, absolute number and activation marker expression were defined. Immunologic features were defined and analyzed by hierarchical clustering and principal component analysis (PCA). Changes over time were evaluated by repeated measures ANOVA (RMANOVA) and were corrected for a 1% false discovery rate. Post hoc testing was by Dunn's test. p values of < = 0.05 were considered significant. RESULTS: Thirteen patients were enrolled; 11(85%) F, 65.4 years (± 7.5), surgical duration 418 ± 83 min, EBL 1928 ± 1253 mL. Hierarchical clustering and PCA found consistent time from incision-dependent changes. HLA-DR and activating co-stimulatory molecule CD86 were depressed at 4 h and furthermore at 24 h on monocyte surfaces. CD4 + HLA-DR + T cells, but not CD8 +, increased over time with increased expression of PD-1 at 4 and 24 h. CONCLUSIONS: Despite surgery and patient heterogeneity, we identified an immune signature associated with the sterile trauma of ASD surgery. Circulating leukocyte populations change in composition and signaling protein expression after incision and persisting to 24 h after incision, suggesting an immunocompromised state. Further work may determine relationships between this state and poor outcomes after surgery.


Assuntos
Antígenos HLA-DR , Receptor de Morte Celular Programada 1 , Adulto , Humanos , Imunofenotipagem , Antígenos HLA-DR/metabolismo , Citometria de Fluxo
4.
PLoS One ; 17(4): e0264979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421120

RESUMO

The global COVID-19 pandemic has claimed the lives of more than 750,000 US citizens. Dysregulation of the immune system underlies the pathogenesis of COVID-19, with inflammation mediated tissue injury to the lung in the setting of suppressed systemic immune function. To define the molecular mechanisms of immune dysfunction in COVID-19 we utilized a systems immunology approach centered on the circulating leukocyte phosphoproteome measured by mass cytometry. We find that although COVID-19 is associated with wholesale activation of a broad set of signaling pathways across myeloid and lymphoid cell populations, STAT3 phosphorylation predominated in both monocytes and T cells. STAT3 phosphorylation was tightly correlated with circulating IL-6 levels and high levels of phospho-STAT3 was associated with decreased markers of myeloid cell maturation/activation and decreased ex-vivo T cell IFN-γ production, demonstrating that during COVID-19 dysregulated cellular activation is associated with suppression of immune effector cell function. Collectively, these data reconcile the systemic inflammatory response and functional immunosuppression induced by COVID-19 and suggest STAT3 signaling may be the central pathophysiologic mechanism driving immune dysfunction in COVID-19.


Assuntos
COVID-19 , Humanos , Monócitos/metabolismo , Pandemias , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Linfócitos T
5.
Drug Metab Pharmacokinet ; 41: 100418, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34628357

RESUMO

The human drug transporter Organic Anion Transporting Polypeptide (hOATP)2B1 facilitates cellular uptake of its substrates. Various studies suggest that hOATP2B1 is involved in intestinal absorption, but preclinical evaluations performed in rodents do not support this. Thus, our study aimed to compare the expression and function of hOATP2B1 with its orthologue in rats (rOatp2b1). Even if the general expression pattern was comparable, the transporters exhibited substantial differences on functional level. While bromosulfophthalein and atorvastatin were substrates of both transporters, the steroid sulfate conjugates estrone 3-sulfate (E1S), progesterone sulfate and dehydroepiandrosterone sulfate were only transported by hOATP2B1. To further elucidate these functional differences, experiments searching for the E1S substrate recognition site were conducted generating human-rat chimera as well as partly humanized variants of rOatp2b1. The rOatp2b1-329-hOATP2B1 chimera led to a significant increase in E1S uptake suggesting the C-terminal part of the human transporter is involved. However, humanization of various regions within this part, namely of the transmembrane domain (TMD)-9, TMD-10 or the extracellular loop-5 did not significantly change E1S transport function. Replacement of the intracellular loop-3, slightly enhanced cellular accumulation of sulfated steroids. Taken together, we report that OATP2B1 exhibited differences in recognition of steroid sulfate conjugates comparing the rat and human orthologues.


Assuntos
Transportadores de Ânions Orgânicos , Animais , Atorvastatina , Transporte Biológico , Estrona , Humanos , Absorção Intestinal , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Ratos
6.
Gastroenterology ; 161(3): 968-981.e12, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34004161

RESUMO

BACKGROUND AND AIMS: Insulin resistance is a key factor in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). We evaluated the importance of subcutaneous abdominal adipose tissue (SAAT) inflammation and both plasma and SAAT-derived exosomes in regulating insulin sensitivity in people with obesity and NAFLD. METHODS: Adipose tissue inflammation (macrophage and T-cell content and expression of proinflammatory cytokines), liver and whole-body insulin sensitivity (assessed using a hyperinsulinemic-euglycemic clamp and glucose tracer infusion), and 24-hour serial plasma cytokine concentrations were evaluated in 3 groups stratified by adiposity and intrahepatic triglyceride (IHTG) content: (1) lean with normal IHTG content (LEAN; N = 14); (2) obese with normal IHTG content (OB-NL; N = 28); and (3) obese with NAFLD (OB-NAFLD; N = 28). The effect of plasma and SAAT-derived exosomes on insulin-stimulated Akt phosphorylation in human skeletal muscle myotubes and mouse primary hepatocytes was assessed in a subset of participants. RESULTS: Proinflammatory macrophages, proinflammatory CD4 and CD8 T-cell populations, and gene expression of several cytokines in SAAT were greater in the OB-NAFLD than the OB-NL and LEAN groups. However, with the exception of PAI-1, which was greater in the OB-NAFLD than the LEAN and OB-NL groups, 24-hour plasma cytokine concentration areas-under-the-curve were not different between groups. The percentage of proinflammatory macrophages and plasma PAI-1 concentration areas-under-the-curve were inversely correlated with both hepatic and whole-body insulin sensitivity. Compared with exosomes from OB-NL participants, plasma and SAAT-derived exosomes from the OB-NAFLD group decreased insulin signaling in myotubes and hepatocytes. CONCLUSIONS: Systemic insulin resistance in people with obesity and NAFLD is associated with increased plasma PAI-1 concentrations and both plasma and SAAT-derived exosomes. ClinicalTrials.gov number: NCT02706262 (https://clinicaltrials.gov/ct2/show/NCT02706262).


Assuntos
Citocinas/sangue , Exossomos/metabolismo , Resistência à Insulina , Macrófagos/metabolismo , Células T de Memória/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Obesidade/sangue , Inibidor 1 de Ativador de Plasminogênio/sangue , Gordura Subcutânea Abdominal/metabolismo , Adulto , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Células Cultivadas , Exossomos/imunologia , Feminino , Hepatócitos/metabolismo , Humanos , Insulina/sangue , Fígado/metabolismo , Macrófagos/imunologia , Masculino , Células T de Memória/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/diagnóstico , Obesidade/imunologia , Obesidade/fisiopatologia , Gordura Subcutânea Abdominal/imunologia , Técnicas de Cultura de Tecidos
7.
J Surg Res ; 265: 212-222, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33951586

RESUMO

BACKGROUND: Sepsis induces gut barrier dysfunction characterized by increased gut epithelial apoptosis and increased intestinal permeability. The cytokine IL-22 has been demonstrated to regulate gut barrier function. Type-3 innate lymphoid cells (ILC3) are the predominate source of IL-22 in the GI tract. We hypothesized that sepsis may cause changes to the gut ILC3/IL-22 axis. MATERIALS AND METHODS: Sepsis was induced in WT and IL-22 KO mice by Pseudomonas aeruginosa pneumonia. Changes in gut-associated leukocyte populations were determined by flow-cytometry and ILC-associated transcripts were measured by RT-PCR. The effect of sepsis on gut permeability, pulmonary microbial burden, gut epithelial apoptosis, and survival was compared between WT and IL-22-/- mice. RESULTS: Sepsis resulted in a significant decrease in the number of ILC3 in the gut, with a reciprocal increase in type-1 ILC (ILC1). Consistent with prior reports, sepsis was associated with increased gut permeability; however there was no difference in gut permeability, gut epithelial apoptosis, pulmonary microbial burden, or survival between WT and IL-22-/- mice. CONCLUSIONS: Septic pneumonia causes a decrease in gut-associated ILC3 and an associated reciprocal increase in ILC1. This may reflect inflammation-induced conversion of ILC3 to ILC1. Constitutive systemic IL-22 deficiency does not alter sepsis-induced gut barrier dysfunction.


Assuntos
Mucosa Intestinal/imunologia , Linfócitos , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Sepse/imunologia , Animais , Masculino , Camundongos Endogâmicos C57BL , Pneumonia Bacteriana/complicações , Infecções por Pseudomonas/complicações
8.
J Trauma Acute Care Surg ; 90(6): 924-934, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34016916

RESUMO

BACKGROUND: Forty percent of critically ill trauma patients will develop an infectious complication. Pneumonia is the most common cause of death of trauma patients surviving their initial insult. We previously demonstrated that polytrauma (PT), defined as two or more severe injuries in at least two areas of the body, induces emergency hematopoiesis characterized by accelerated myelopoiesis in the bone marrow and increased myeloid cell frequency in the peripheral tissues. We hypothesized that PT alone induces priming of neutrophils, resulting in hyperactivation upon secondary exposure to bacteria and causing acute lung injury and increased susceptibility to secondary exposure to Pseudomonas aeruginosa pneumonia. METHODS: C57BL/6 mice were subjected to PT consisting of a lower extremity pseudofracture, liver crush injury, and 15% blood-volume hemorrhage. Pneumonia was induced by intratracheal injection of 5 × 106 CFU live P. aeruginosa or 1 × 107 of heat-killed P. aeruginosa (HKPA). For reactive oxygen species (ROS), studies polymorphonuclear neutrophils (PMNs) were isolated by immunomagnetic bead negative selection and stimulated ex-vivo with HKPA. Reactive oxygen species production was measured by immunofluorescence. For histology, lung sections were stained by hematoxylin-eosin and analyzed by a blinded grader. RESULTS: Polytrauma induced persistent changes in immune function at baseline and to secondary infection. Pneumonia after injury resulted in increased mortality (60% vs. 5% p < 0.01). Blood neutrophils from PT mice had higher resting (unstimulated) ROS production than in naive animals (p < 0.02) demonstrating priming of the neutrophils following PT. After intratracheal HKPA injection, bronchoalveolar lavage PMNs from injured mice had higher ROS production compared with naive mice (p < 0.01), demonstrating an overexuberant immunopathologic response of neutrophils following PT. CONCLUSION: Polytrauma primes neutrophils and causes immunopathologic PMN ROS production, increased lung injury and susceptibility to secondary bacterial pneumonia. These results suggest that trauma-induced immune dysfunction can cause immunopathologic response to secondary infection and suggests neutrophil-mediated pulmonary damage as a therapeutic target for posttrauma pneumonia.


Assuntos
Lesão Pulmonar Aguda/imunologia , Traumatismo Múltiplo/complicações , Neutrófilos/imunologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Humanos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Traumatismo Múltiplo/sangue , Traumatismo Múltiplo/diagnóstico , Traumatismo Múltiplo/imunologia , Neutrófilos/metabolismo , Pneumonia Bacteriana/sangue , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Infecções por Pseudomonas/sangue , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/imunologia , Espécies Reativas de Oxigênio/metabolismo , Índices de Gravidade do Trauma
9.
Hepatology ; 74(3): 1287-1299, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33743554

RESUMO

BACKGROUND AND AIMS: It is proposed that impaired expansion of subcutaneous adipose tissue (SAT) and an increase in adipose tissue (AT) fibrosis causes ectopic lipid accumulation, insulin resistance (IR), and metabolically unhealthy obesity. We therefore evaluated whether a decrease in SAT expandability, assessed by measuring SAT lipogenesis (triglyceride [TG] production), and an increase in SAT fibrogenesis (collagen production) are associated with NAFLD and IR in persons with obesity. APPROACH AND RESULTS: In vivo abdominal SAT lipogenesis and fibrogenesis, expression of SAT genes involved in extracellular matrix (ECM) formation, and insulin sensitivity were assessed in three groups of participants stratified by adiposity and intrahepatic TG (IHTG) content: (1) healthy lean with normal IHTG content (Lean-NL; n = 12); (2) obese with normal IHTG content and normal glucose tolerance (Ob-NL; n = 25); and (3) obese with NAFLD and abnormal glucose metabolism (Ob-NAFLD; n = 25). Abdominal SAT TG synthesis rates were greater (P < 0.05) in both the Ob-NL (65.9 ± 4.6 g/wk) and Ob-NAFLD groups (71.1 ± 6.7 g/wk) than the Lean-NL group (16.2 ± 2.8 g/wk) without a difference between the Ob-NL and Ob-NAFLD groups. Abdominal SAT collagen synthesis rate and the composite expression of genes encoding collagens progressively increased from the Lean-NL to the Ob-NL to the Ob-NAFLD groups and were greater in the Ob-NAFLD than the Ob-NL group (P < 0.05). Composite expression of collagen genes was inversely correlated with both hepatic and whole-body insulin sensitivity (P < 0.001). CONCLUSIONS: AT expandability is not impaired in persons with obesity and NAFLD. However, SAT fibrogenesis is greater in persons with obesity and NAFLD than in those with obesity and normal IHTG content, and is inversely correlated with both hepatic and whole-body insulin sensitivity.


Assuntos
Colágeno/metabolismo , Intolerância à Glucose/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Gordura Subcutânea Abdominal/metabolismo , Triglicerídeos/metabolismo , Tecido Adiposo/metabolismo , Adulto , Matriz Extracelular/metabolismo , Feminino , Fibrose , Intolerância à Glucose/complicações , Humanos , Resistência à Insulina , Lipogênese , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Obesidade/complicações , Gordura Subcutânea/metabolismo
10.
Res Sq ; 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33619472

RESUMO

The global COVID-19 pandemic has claimed the lives of more than 450,000 US citizens. Dysregulation of the immune system underlies the pathogenesis of COVID-19, with inflammation mediated local tissue injury to the lung in the setting of suppressed systemic immune function. To define the molecular mechanisms of immune dysfunction in COVID-19 we utilized a systems immunology approach centered on the circulating leukocyte phosphoproteome measured by mass cytometry. COVID-19 is associated with wholesale activation of a broad set of signaling pathways across myeloid and lymphoid cell populations. STAT3 phosphorylation predominated in both monocytes and T cells and was tightly correlated with circulating IL-6 levels. High levels of STAT3 phosphorylation was associated with decreased markers of myeloid cell maturation/activation and decreased ex-vivo T cell IFN-gamma production, demonstrating that during COVID-19 dysregulated cellular activation is associated with suppression of immune effector cell function. Collectively, these data reconcile the systemic inflammatory response and functional immunosuppression induced by COVID-19 and suggest STAT3 signaling may be the central pathophysiologic mechanism driving immune dysfunction in COVID-19.

11.
J Neurosci ; 40(50): 9602-9616, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33158964

RESUMO

Functional recovery in the end target muscle is a determinant of outcome after peripheral nerve injury. The neuromuscular junction (NMJ) provides the interface between nerve and muscle and includes non-myelinating terminal Schwann cells (tSCs). After nerve injury, tSCs extend cytoplasmic processes between NMJs to guide axon growth and NMJ reinnervation. The mechanisms related to NMJ reinnervation are not known. We used multiple mouse models to investigate the mechanisms of NMJ reinnervation in both sexes, specifically whether macrophage-derived vascular endothelial growth factor-A (Vegf-A) is crucial to establishing NMJ reinnervation at the end target muscle. Both macrophage number and Vegf-A expression increased in end target muscles after nerve injury and repair. In mice with impaired recruitment of macrophages and monocytes (Ccr2-/- mice), the absence of CD68+ cells (macrophages) in the muscle resulted in diminished muscle function. Using a Vegf-receptor 2 (VegfR2) inhibitor (cabozantinib; CBZ) via oral gavage in wild-type (WT) mice resulted in reduced tSC cytoplasmic process extension and decreased NMJ reinnervation compared with saline controls. Mice with Vegf-A conditionally knocked out in macrophages (Vegf-Afl/fl; LysMCre mice) demonstrated a more prolonged detrimental effect on NMJ reinnervation and worse functional muscle recovery. Together, these results show that contributions of the immune system are integral for NMJ reinnervation and functional muscle recovery after nerve injury.SIGNIFICANCE STATEMENT This work demonstrates beneficial contributions of a macrophage-mediated response for neuromuscular junction (NMJ) reinnervation following nerve injury and repair. Macrophage recruitment occurred at the NMJ, distant from the nerve injury site, to support functional recovery at the muscle. We have shown hindered terminal Schwann cell (tSC) injury response and NMJ recovery with inhibition of: (1) macrophage recruitment after injury; (2) vascular endothelial growth factor receptor 2 (VegfR2) signaling; and (3) Vegf secretion from macrophages. We conclude that macrophage-derived Vegf is a key component of NMJ recovery after injury. Determining the mechanisms active at the end target muscle after motor nerve injury reveals new therapeutic targets that may translate to improve motor recovery following nerve injury.


Assuntos
Macrófagos/metabolismo , Regeneração Nervosa/fisiologia , Junção Neuromuscular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Recuperação de Função Fisiológica/fisiologia , Células de Schwann/metabolismo , Neuropatia Ciática/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
12.
Front Immunol ; 11: 2085, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013880

RESUMO

Background: The hemostatic properties of tranexamic acid (TXA) are well described, but the immunological effects of TXA administration after traumatic injury have not been thoroughly examined. We hypothesized TXA would reduce monocyte activation in bleeding trauma patients with severe injury. Methods: This was a single center, double-blinded, randomized controlled trial (RCT) comparing placebo to a 2 g or 4 g intravenous TXA bolus dose in trauma patients with severe injury. Fifty patients were randomized into each study group. The primary outcome was a reduction in monocyte activation as measured by human leukocyte antigen-DR isotype (HLA-DR) expression on monocytes 72 h after TXA administration. Secondary outcomes included kinetic assessment of immune and hemostatic phenotypes within the 72 h window post-TXA administration. Results: The trial occurred between March 2016 and September 2017, when data collection ended. 149 patients were analyzed (placebo, n = 50; 2 g TXA, n = 49; 4 g TXA, n = 50). The fold change in HLA-DR expression on monocytes [reported as median (Q1-Q3)] from pre-TXA to 72 h post-TXA was similar between placebo [0.61 (0.51-0.82)], 2 g TXA [0.57 (0.47-0.75)], and 4 g TXA [0.57 (0.44-0.89)] study groups (p = 0.82). Neutrophil CD62L expression was reduced in the 4 g TXA group [fold change: 0.73 (0.63-0.97)] compared to the placebo group [0.97 (0.78-1.10)] at 24 h post-TXA (p = 0.034). The fold decrease in plasma IL-6 was significantly less in the 4 g TXA group [1.36 (0.87-2.42)] compared to the placebo group [0.46 (0.19-1.69)] at 72 h post-TXA (p = 0.028). There were no differences in frequencies of myeloid or lymphoid populations or in classical complement activation at any of the study time points. Conclusion: In trauma patients with severe injury, 4 g intravenous bolus dosing of TXA has minimal immunomodulatory effects with respect to leukocyte phenotypes and circulating cytokine levels. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02535949.


Assuntos
Hemorragia/tratamento farmacológico , Ácido Tranexâmico/administração & dosagem , Ferimentos e Lesões/tratamento farmacológico , Administração Intravenosa , Método Duplo-Cego , Feminino , Hemorragia/sangue , Hemorragia/imunologia , Humanos , Interleucina-6/sangue , Interleucina-6/imunologia , Selectina L/sangue , Selectina L/imunologia , Masculino , Neutrófilos/imunologia , Neutrófilos/metabolismo , Ferimentos e Lesões/sangue , Ferimentos e Lesões/imunologia
13.
Acta Biomater ; 112: 149-163, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32434080

RESUMO

Decellularized nerve, or acellular nerve allografts (ANAs), are an increasingly used alternative to nerve autografts to repair nerve gaps to facilitate regeneration. The adaptive immune system, specifically T cells, plays a role in promoting regeneration upon these ANA scaffolds. However, how T cells promote regeneration across ANAs is not clear. Here, we show that T cells accumulate within ANAs repairing nerve gaps resulting in regulation of cytokine expression within the ANA environment. This in turn ultimately leads to robust nerve regeneration and functional recovery. Nerve regeneration across ANAs and functional recovery in Rag1KO mice was limited compared to wild-type (WT) mice. Prior to appreciable nerve regeneration, ANAs from Rag1KO mice contained fewer eosinophils and reduced IL-4 expression compared to ANAs from WT mice. During this period, both T cells and eosinophils regulated IL-4 expression within ANAs. Eosinophils represented the majority of IL-4 expressing cells within ANAs, while T cells regulated IL-4 expression. Finally, an essential role for IL-4 during nerve regeneration across ANAs was confirmed as nerves repaired using ANAs had reduced regeneration in IL-4 KO mice compared to WT mice. Our data demonstrate T cells regulate the expression of IL-4 within the ANA environment via their effects on eosinophils. STATEMENT OF SIGNIFICANCE: The immune system has been emerging as a critical component for tissue regeneration, especially when regeneration is supported upon biomaterials. The role of T cells, and their roles in the regeneration of nerve repaired with biomaterials, is still unclear. We demonstrated that when nerves are repaired with decellularized nerve scaffolds, T cells contribute to regeneration by regulating cytokines. We focused on their regulation of cytokine IL-4. Unexpectedly, T cells do not produce IL-4, but instead regulate IL-4 by recruiting eosinophils, which are major cellular sources of IL-4 within these scaffolds. Thus, our work demonstrated how IL-4 is regulated in a model biomaterial, and has implications for improving the design of biomaterials and understanding immune responses to biomaterials.


Assuntos
Eosinófilos , Interleucina-4 , Animais , Camundongos , Regeneração Nervosa , Linfócitos T , Transplante Homólogo
14.
Am J Transplant ; 20(5): 1251-1261, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31721409

RESUMO

Long-term survival after lung transplantation remains profoundly limited by graft rejection. Recent work has shown that bronchus-associated lymphoid tissue (BALT), characterized by the development of peripheral nodal addressin (PNAd)-expressing high endothelial venules and enriched in B and Foxp3+ T cells, is important for the maintenance of allograft tolerance. Mechanisms underlying BALT induction in tolerant pulmonary allografts, however, remain poorly understood. Here, we show that the development of PNAd-expressing high endothelial venules within intragraft lymphoid follicles and the recruitment of B cells, but not Foxp3+ cells depends on IL-22. We identify graft-infiltrating gamma-delta (γδ) T cells and Type 3 innate lymphoid cells (ILC3s) as important producers of IL-22. Reconstitution of IL-22 at late time points through retransplantation into wildtype hosts mediates B cell recruitment into lymphoid follicles within the allograft, resulting in a significant increase in their size, but does not induce PNAd expression. Our work has identified cellular and molecular requirements for the induction of BALT in pulmonary allografts during tolerance induction and may provide a platform for the development of new therapies for lung transplant patients.


Assuntos
Imunidade Inata , Tecido Linfoide , Aloenxertos , Brônquios , Rejeição de Enxerto/etiologia , Humanos , Interleucinas , Pulmão , Linfócitos , Interleucina 22
15.
Exp Neurol ; 318: 216-231, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31085199

RESUMO

Repair of traumatic nerve injuries can require graft material to bridge the defect. The use of alternatives to bridge the defect, such as acellular nerve allografts (ANAs), is becoming more common and desired. Although ANAs support axon regeneration across short defects (<3 cm), axon regeneration across longer defects (>3 cm) is limited. It is unclear why alternatives, including ANAs, are functionally limited by length. After repairing Lewis rat nerve defects using short (2 cm) or long (4 cm) ANAs, we showed that long ANAs have severely reduced axon regeneration across the grafts and contain Schwann cells with a unique phenotype. But additionally, we found that long ANAs have disrupted angiogenesis and altered leukocyte infiltration compared to short ANAs as early as 2 weeks after repair. In particular, long ANAs contained fewer T cells compared to short ANAs. These outcomes were accompanied with reduced expression of select cytokines, including IFN-γ and IL-4, within long versus short ANAs. T cells within ANAs did not express elevated levels of IL-4, but expressed elevated levels of IFN-γ. We also directly assessed the contribution of T cells to regeneration across nerve grafts using athymic rats. Interestingly, T cell deficiency had minimal impact on axon regeneration across nerve defects repaired using isografts. Conversely, T cell deficiency reduced axon regeneration across nerve defects repaired using ANAs. Our data demonstrate that T cells contribute to nerve regeneration across ANAs and suggest that reduced T cells accumulation within long ANAs could contribute to limiting axon regeneration across these long ANAs.


Assuntos
Regeneração Tecidual Guiada/métodos , Regeneração Nervosa/fisiologia , Nervo Isquiático/lesões , Nervo Isquiático/transplante , Linfócitos T/imunologia , Aloenxertos , Animais , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Alicerces Teciduais
16.
J Immunol ; 202(10): 3020-3032, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988118

RESUMO

The inflammatory response to infection or injury dramatically increases the hematopoietic demand on the bone marrow to replace effector leukocytes consumed in the inflammatory response. In the setting of infection, pathogen-associated molecular patterns induce emergency hematopoiesis, activating hematopoietic stem and progenitor cells to proliferate and produce progeny for accelerated myelopoiesis. Sterile tissue injury due to trauma also increases leukocyte demand; however, the effect of sterile tissue injury on hematopoiesis is not well described. We find that tissue injury alone induces emergency hematopoiesis in mice subjected to polytrauma. This process is driven by IL-1/MyD88-dependent production of G-CSF. G-CSF induces the expansion of hematopoietic progenitors, including hematopoietic stem cells and multipotent progenitors, and increases the frequency of myeloid-skewed progenitors. To our knowledge, these data provide the first comprehensive description of injury-induced emergency hematopoiesis and identify an IL-1/MyD88/G-CSF-dependent pathway as the key regulator of emergency hematopoiesis after injury.


Assuntos
Fator Estimulador de Colônias de Granulócitos/imunologia , Hematopoese/imunologia , Interleucina-1/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Ferimentos e Lesões/imunologia , Animais , Fator Estimulador de Colônias de Granulócitos/genética , Hematopoese/genética , Interleucina-1/genética , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Ferimentos e Lesões/genética , Ferimentos e Lesões/patologia
17.
J Leukoc Biol ; 101(2): 543-554, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27630218

RESUMO

Patients with protracted sepsis develop impaired immunity, which predisposes them to acquiring secondary infections. One of the most common and lethal secondary infections is Pseudomonas aeruginosa pneumonia. Immunoadjuvant therapy is a promising approach to reverse sepsis-induced immunosuppression and improve morbidity and mortality from secondary infections. Interleukin-7 is an immunoadjuvant that improves survival in clinically relevant animal models of polymicrobial peritonitis and in fungal sepsis. This study investigated the effect of recombinant human interleukin-7 (rhIL-7) on survival in a 2-hit model of sublethal cecal ligation and puncture followed by P. aeruginosa pneumonia. Potential immunologic mechanisms responsible for the rhIL-7 putative beneficial effect were also examined, focusing on IL-17, IL-22, IFN-γ, and TNF-α, cytokines that are critical in the control of sepsis and pulmonary Pseudomonas infections. Results showed that rhIL-7 was highly effective in preventing P. aeruginosa-induced death, i.e., 92% survival in rhIL-7-treated mice versus 56% survival in control mice. rhIL-7 increased absolute numbers of immune effector cells in lung and spleen and ameliorated the sepsis-induced loss of lung innate lymphoid cells (ILCs). rhIL-7 also significantly increased IL-17-, IFN-γ-, and TNF-α-producing lung ILCs and CD8 T cells as well as IFN-γ- and TNF-α-producing splenic T cell subsets and ILCs. Furthermore, rhIL-7 enhanced NF-κB and STAT3 signaling in lungs during sepsis and pneumonia. Given the high mortality associated with secondary P. aeruginosa pneumonia, the ability of rhIL-7 to improve immunity and increase survival in multiple animal models of sepsis, and the remarkable safety profile of rhIL-7, clinical trials with rhIL-7 should be considered.


Assuntos
Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Imunoterapia , Interleucina-7/uso terapêutico , Pneumonia/tratamento farmacológico , Pneumonia/imunologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/fisiologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Interleucina-7/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Contagem de Linfócitos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Pneumonia/complicações , Pneumonia/microbiologia , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Fator de Transcrição STAT3/metabolismo , Sepse/complicações , Sepse/patologia , Transdução de Sinais/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/patologia , Análise de Sobrevida
18.
Immunity ; 44(5): 1127-39, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27156386

RESUMO

The signals guiding differentiation of innate lymphoid cells (ILCs) within tissues are not well understood. Salivary gland (SG) ILCs as well as liver and intestinal intraepithelial ILC1 have markers that denote tissue residency and transforming growth factor-ß (TGF-ß) imprinting. We deleted Tgfbr2 in cells expressing the ILC and NK marker NKp46 and found that SG ILCs were reduced in number. They lost distinct tissue markers, such as CD49a, and the effector molecules TRAIL and CD73. Expression of the transcription factor Eomes, which promotes NK cell differentiation, was elevated. Conversely, Eomes deletion in NKp46(+) cells enhanced TGF-ß-imprinting of SG ILCs. Thus, TGF-ß induces SG ILC differentiation by suppressing Eomes. TGF-ß acted through a JNK-dependent, Smad4-independent pathway. Transcriptome analysis demonstrated that SG ILCs had characteristic of both NK cells and ILC1. Finally, TGF-ß imprinting of SG ILCs was synchronized with SG development, highlighting the impact of tissue microenvironment on ILC development.


Assuntos
Diferenciação Celular , Células Matadoras Naturais/fisiologia , Linfócitos/fisiologia , Glândulas Salivares/imunologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Antígenos Ly/metabolismo , Microambiente Celular , Perfilação da Expressão Gênica , Imunidade Inata , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Knockout , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteína Smad4/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
19.
Front Immunol ; 7: 104, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047491

RESUMO

Innate lymphoid cells (ILCs) are innate immune cells that provide an early source of cytokines to initiate and tailor the immune response to the type of the encountered pathogen or insult. The group 1 ILCs are comprised of conventional natural killer (cNK) cells and subsets of "unconventional NK cells," termed ILC1s. Although cNK cells and ILC1s share many features, such as certain phenotypic markers and the ability to produce IFN-γ upon activation, it is now becoming apparent that these two subsets develop from different progenitors and show unique tissue distribution and functional characteristics. Recent studies have aimed at elucidating the individual contributions of cNK cells and ILC1s during protective host responses as well as during chronic inflammation. This review provides an overview of the current knowledge of the developmental origins as well as of the phenotypic and functional characteristics of ILC1s.

20.
Shock ; 45(5): 555-63, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26863126

RESUMO

Pneumonia is the most common complication observed in patients with severe injuries. Although the average age of injured patients is 47 years, existing studies of the effect of injury on the susceptibility to infectious complications have focused on young animals, equivalent to a late adolescent human. We hypothesized that mature adult animals are more susceptible to infection after injury than younger counterparts. To test this hypothesis, we challenged 6 to 8-month-old mature mice to a polytrauma injury followed by Pseudomonas aeruginosa pneumonia and compared them to young (8-10-week-old) animals. We demonstrate that polytrauma injury increases mortality from pneumonia in mature animals (sham-pneumonia 21% vs. polytrauma-pneumonia 62%) but not younger counterparts. After polytrauma, pneumonia in mature mice is associated with higher bacterial burden in lung, increased incidence of bacteremia, and elevated levels of bacteria in the blood, demonstrating that injury decreases the ability to control the infectious challenge. We further find that polytrauma did not induce elevations in circulating cytokine levels (TNF-alpha, IL-6, KC, and IL-10) 24  h after injury. However, mature mice subjected to polytrauma demonstrated an exaggerated circulating inflammatory cytokine response to subsequent Pseudomonas pneumonia. Additionally, whereas prior injury increases LPS-stimulated IL-6 production by peripheral blood leukocytes from young (8-10-week-old) mice, injury does not prime IL-6 production by cell from mature adult mice. We conclude that in mature mice polytrauma results in increased susceptibility to Pseudomonas pneumonia while priming an exaggerated but ineffective inflammatory response.


Assuntos
Traumatismo Múltiplo/complicações , Traumatismo Múltiplo/microbiologia , Pneumonia/etiologia , Pneumonia/microbiologia , Infecções por Pseudomonas/etiologia , Infecções por Pseudomonas/microbiologia , Animais , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo Múltiplo/metabolismo , Pneumonia/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/patogenicidade , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA