Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Heliyon ; 10(5): e26656, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434323

RESUMO

Pathogenic variants in the GNAO1 gene, encoding the alpha subunit of an inhibitory heterotrimeric guanine nucleotide-binding protein (Go) highly expressed in the mammalian brain, have been linked to encephalopathy characterized by different combinations of neurological symptoms, including developmental delay, hypotonia, epilepsy and hyperkinetic movement disorder with life-threatening paroxysmal exacerbations. Currently, there are only symptomatic treatments, and little is known about the pathophysiology of GNAO1-related disorders. Here, we report the characterization of a new in vitro model system based on patient-derived induced pluripotent stem cells (hiPSCs) carrying the recurrent p.G203R amino acid substitution in Gαo, and a CRISPR-Cas9-genetically corrected isogenic control line. RNA-Seq analysis highlighted aberrant cell fate commitment in neuronal progenitor cells carrying the p.G203R pathogenic variant. Upon differentiation into cortical neurons, patients' cells showed reduced expression of early neural genes and increased expression of astrocyte markers, as well as premature and defective differentiation processes leading to aberrant formation of neuronal rosettes. Of note, comparable defects in gene expression and in the morphology of neural rosettes were observed in hiPSCs from an unrelated individual harboring the same GNAO1 variant. Functional characterization showed lower basal intracellular free calcium concentration ([Ca2+]i), reduced frequency of spontaneous activity, and a smaller response to several neurotransmitters in 40- and 50-days differentiated p.G203R neurons compared to control cells. These findings suggest that the GNAO1 pathogenic variant causes a neurodevelopmental phenotype characterized by aberrant differentiation of both neuronal and glial populations leading to a significant alteration of neuronal communication and signal transduction.

2.
Mol Neurobiol ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240993

RESUMO

Excessive Ca2+ influx through N-methyl-D-aspartate type glutamate receptors (NMDAR) is associated with excitotoxicity and neuronal death, but the inhibition of this receptor-channel causes severe adverse effects. Thus, a selective reduction of NMDA-mediated Ca2+ entry, leaving unaltered the Na+ current, could represent a valid neuroprotective strategy. We developed a new two-fluorophore approach to efficiently assess the Ca2+ permeability of ligand-gated ion channels, including NMDARs, in different conditions. This technique was able to discriminate differential Ca2+/Na+ permeation ratio through different receptor channels, and through the same channel in different conditions. With this method, we confirmed that EU1794-4, a negative allosteric modulator of NMDARs, decreased their Ca2+ permeability. Furthermore, we measured for the first time the fractional Ca2+ current (Pf, i.e. the percentage of the total current carried by Ca2+ ions) of human NMDARs in the presence of EU1794-4, exhibiting a 40% reduction in comparison to control conditions. EU1794-4 was also able to reduce NMDA-mediated Ca2+ entry in human neurons derived from induced pluripotent stem cells. This last effect was stronger in the absence of extracellular Mg2+, but still significant in its presence, supporting the hypothesis to use NMDA-selective allosteric modulators to lower Ca2+ influx in human neurons, to prevent Ca2+-dependent excitotoxicity and consequent neurodegeneration.

3.
Cells ; 12(11)2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37296615

RESUMO

BACKGROUND: Schwann cells (SCs) are glial cells involved in peripheral axon myelination. SCs also play a strategic role after peripheral nerve injury, regulating local inflammation and axon regeneration. Our previous studies demonstrated the presence of cholinergic receptors in SCs. In particular, the α7 nicotinic acetylcholine receptors (nAChRs) are expressed in SCs after peripheral axotomy, suggesting their involvement in the regulation of SC-regenerating properties. To clarify the role that α7 nAChRs may play after peripheral axon damage, in this study we investigated the signal transduction pathways triggered by receptor activation and the effects produced by their activation. METHODS: Both ionotropic and metabotropic cholinergic signaling were analyzed by calcium imaging and Western blot analysis, respectively, following α7 nAChR activation. In addition, the expression of c-Jun and α7 nAChRs was evaluated by immunocytochemistry and Western blot analysis. Finally, the cell migration was studied by a wound healing assay. RESULTS: Activation of α7 nAChRs, activated by the selective partial agonist ICH3, did not induce calcium mobilization but positively modulated the PI3K/AKT/mTORC1 axis. Activation of the mTORC1 complex was also supported by the up-regulated expression of its specific p-p70 S6KThr389 target. Moreover, up-regulation of p-AMPKThr172, a negative regulator of myelination, was also observed concomitantly to an increased nuclear accumulation of the transcription factor c-Jun. Cell migration and morphology analyses proved that α7 nAChR activation also promotes SC migration. CONCLUSIONS: Our data demonstrate that α7 nAChRs, expressed by SCs only after peripheral axon damage and/or in an inflammatory microenvironment, contribute to improve the SCs regenerating properties. Indeed, α7 nAChR stimulation leads to an upregulation of c-Jun expression and promotes Schwann cell migration by non-canonical pathways involving the mTORC1 activity.


Assuntos
Axônios , Receptor Nicotínico de Acetilcolina alfa7 , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Axônios/metabolismo , Cálcio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regeneração Nervosa , Transdução de Sinais/fisiologia , Células de Schwann/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
4.
Nat Commun ; 14(1): 3103, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248289

RESUMO

The mechanisms of communication between the brain and the immune cells are still largely unclear. Here, we characterize the populations of resident natural killer (NK) cells and innate lymphoid cells (ILC) 1 in the meningeal dura layer of adult mice. We describe that ILC1/NK cell-derived interferon-γ and acetylcholine can contribute to the modulation of brain homeostatic functions, shaping synaptic neuronal transmission and neurotransmitter levels with effects on mice behavior. In detail, the interferon-γ plays a role in the formation of non-spatial memory, tuning the frequency of GABAergic neurotransmission on cortical pyramidal neurons, while the acetylcholine is a mediator involved in the modulation of brain circuitries that regulate anxiety-like behavior. These findings disclose mechanisms of immune-to-brain communication that modulate brain functions under physiological conditions.


Assuntos
Acetilcolina , Interferon gama , Animais , Camundongos , Linfócitos , Imunidade Inata , Células Matadoras Naturais , Ansiedade
5.
Mol Neurobiol ; 60(4): 2150-2173, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36609826

RESUMO

Parkinson's disease (PD) represents the most common neurodegenerative movement disorder. We recently identified 16 novel genes associated with PD. In this study, we focused the attention on the common and rare variants identified in the lysosomal K+ channel TMEM175. The study includes a detailed clinical and genetic analysis of 400 cases and 300 controls. Molecular studies were performed on patient-derived fibroblasts. The functional properties of the mutant channels were assessed by patch-clamp technique and co-immunoprecipitation. We have found that TMEM175 was highly expressed in dopaminergic neurons of the substantia nigra pars compacta and in microglia of the cerebral cortex of the human brain. Four common variants were associated with PD, including two novel variants rs2290402 (c.-10C > T) and rs80114247 (c.T1022C, p.M341T), located in the Kozak consensus sequence and TM3II domain, respectively. We also disclosed 13 novel highly penetrant detrimental mutations in the TMEM175 gene associated with PD. At least nine of these mutations (p.R35C, p. R183X, p.A270T, p.P308L, p.S348L, p. L405V, p.R414W, p.P427fs, p.R481W) may be sufficient to cause the disease, and the presence of mutations of other genes correlated with an earlier disease onset. In vitro functional analysis of the ion channel encoded by the mutated TMEM175 gene revealed a loss of the K+ conductance and a reduced channel affinity for Akt. Moreover, we observed an impaired autophagic/lysosomal proteolytic flux and an increase expression of unfolded protein response markers in patient-derived fibroblasts. These data suggest that mutations in TMEM175 gene may contribute to the pathophysiology of PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doenças Neurodegenerativas/metabolismo , Canais Iônicos/metabolismo , Lisossomos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Canais de Potássio/metabolismo
6.
Mol Ther ; 31(1): 282-299, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36116006

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disorder with no effective cure currently available. Over the past few years our research has shown that alterations in sphingolipid metabolism represent a critical determinant in HD pathogenesis. In particular, aberrant metabolism of sphingosine-1-phosphate (S1P) has been reported in multiple disease settings, including human postmortem brains from HD patients. In this study, we investigate the potential therapeutic effect of the inhibition of S1P degradative enzyme SGPL1, by the chronic administration of the 2-acetyl-5-tetrahydroxybutyl imidazole (THI) inhibitor. We show that THI mitigated motor dysfunctions in both mouse and fly models of HD. The compound evoked the activation of pro-survival pathways, normalized levels of brain-derived neurotrophic factor, preserved white matter integrity, and stimulated synaptic functions in HD mice. Metabolically, THI restored normal levels of hexosylceramides and stimulated the autophagic and lysosomal machinery, facilitating the reduction of nuclear inclusions of both wild-type and mutant huntingtin proteins.


Assuntos
Doença de Huntington , Camundongos , Humanos , Animais , Doença de Huntington/tratamento farmacológico , Modelos Teóricos , Imidazóis/farmacologia , Glicoesfingolipídeos , Modelos Animais de Doenças , Proteína Huntingtina/genética
7.
Front Mol Neurosci ; 16: 1333745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292023

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective therapy, causing progressive loss of motor neurons in the spinal cord, brainstem, and motor cortex. Regardless of its genetic or sporadic origin, there is currently no cure for ALS or therapy that can reverse or control its progression. In the present study, taking advantage of a human superoxide dismutase-1 mutant (hSOD1-G93A) mouse that recapitulates key pathological features of human ALS, we investigated the possible role of voltage-gated potassium channel Kv1.3 in disease progression. We found that chronic administration of the brain-penetrant Kv1.3 inhibitor, PAP-1 (40 mg/Kg), in early symptomatic mice (i) improves motor deficits and prolongs survival of diseased mice (ii) reduces astrocyte reactivity, microglial Kv1.3 expression, and serum pro-inflammatory soluble factors (iii) improves structural mitochondrial deficits in motor neuron mitochondria (iv) restores mitochondrial respiratory dysfunction. Taken together, these findings underscore the potential significance of Kv1.3 activity as a contributing factor to the metabolic disturbances observed in ALS. Consequently, targeting Kv1.3 presents a promising avenue for modulating disease progression, shedding new light on potential therapeutic strategies for ALS.

8.
Life (Basel) ; 12(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36013357

RESUMO

Rat dorsal root ganglion (DRG) neurons express 5-hydroxytryptamine receptors (5-HT3Rs). To elucidate their physiological role in the modulation of sensory signaling, we aimed to quantify their functional expression in newborn and adult rat DRG neurons, as well as their ability to modulate the Ca2+-dependent neurotransmitter release, by means of electrophysiological techniques combined with fluorescence-based Ca2+ imaging. The selective 5-HT3R agonist mCPBG (10 µM) elicited whole-cell currents in 92.5% of adult DRG neurons with a significantly higher density current than in responding newborn cells (52.2%), suggesting an increasing serotoninergic modulation on primary afferent cells during development. Briefly, 5-HT3Rs expressed by adult DRG neurons are permeable to Ca2+ ions, with a measured fractional Ca2+ current (i.e., the percentage of total current carried by Ca2+ ions, Pf) of 1.0%, similar to the value measured for the human heteromeric 5-HT3A/B receptor (Pf = 1.1%), but lower than that of the human homomeric 5-HT3A receptor (Pf = 3.5%). mCPBG applied to co-cultures of newborn DRG and spinal neurons significantly increased the miniature excitatory postsynaptic currents (mEPSCs) frequency in a subset of recorded spinal neurons, even in the presence of Cd2+, a voltage-activated Ca2+ channel blocker. Considered together, our findings indicate that the Ca2+ influx through heteromeric 5-HT3Rs is sufficient to increase the spontaneous neurotransmitter release from DRG to spinal neurons.

9.
Biomedicines ; 10(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35625812

RESUMO

Mutations in SCN1A gene, encoding the voltage-gated sodium channel (VGSC) NaV1.1, are widely recognized as a leading cause of genetic febrile seizures (FS), due to the decrease in the Na+ current density, mainly affecting the inhibitory neuronal transmission. Here, we generated induced pluripotent stem cells (iPSCs)-derived neurons (idNs) from a patient belonging to a genetically well-characterized Italian family, carrying the c.434T > C mutation in SCN1A gene (hereafter SCN1AM145T). A side-by-side comparison of diseased and healthy idNs revealed an overall maturation delay of SCN1AM145T cells. Membranes isolated from both diseased and control idNs were injected into Xenopus oocytes and both GABA and AMPA currents were successfully recorded. Patch-clamp measurements on idNs revealed depolarized action potential for SCN1AM145T, suggesting a reduced excitability. Expression analyses of VGSCs and chloride co-transporters NKCC1 and KCC2 showed a cellular "dysmaturity" of mutated idNs, strengthened by the high expression of SCN3A, a more fetal-like VGSC isoform, and a high NKCC1/KCC2 ratio, in mutated cells. Overall, we provide strong evidence for an intrinsic cellular immaturity, underscoring the role of mutant NaV1.1 in the development of FS. Furthermore, our data are strengthening previous findings obtained using transfected cells and recordings on human slices, demonstrating that diseased idNs represent a powerful tool for personalized therapy and ex vivo drug screening for human epileptic disorders.

10.
Front Psychiatry ; 13: 858238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350424

RESUMO

Autism Spectrum Disorder (ASD) is a highly heterogeneous neuropsychiatric disorder with a strong genetic component. The genetic architecture is complex, consisting of a combination of common low-risk and more penetrant rare variants. Voltage-gated calcium channels (VGCCs or Cav) genes have been implicated as high-confidence susceptibility genes for ASD, in accordance with the relevant role of calcium signaling in neuronal function. In order to further investigate the involvement of VGCCs rare variants in ASD susceptibility, we performed whole genome sequencing analysis in a cohort of 105 families, composed of 124 ASD individuals, 210 parents and 58 unaffected siblings. We identified 53 rare inherited damaging variants in Cav genes, including genes coding for the principal subunit and genes coding for the auxiliary subunits, in 40 ASD families. Interestingly, biallelic rare damaging missense variants were detected in the CACNA1H gene, coding for the T-type Cav3.2 channel, in ASD probands from two different families. Thus, to clarify the role of these CACNA1H variants on calcium channel activity we performed electrophysiological analysis using whole-cell patch clamp technology. Three out of four tested variants were shown to mildly affect Cav3.2 channel current density and activation properties, possibly leading to a dysregulation of intracellular Ca2+ ions homeostasis, thus altering calcium-dependent neuronal processes and contributing to ASD etiology in these families. Our results provide further support for the role of CACNA1H in neurodevelopmental disorders and suggest that rare CACNA1H variants may be involved in ASD development, providing a high-risk genetic background.

11.
J Neurosci ; 42(14): 3037-3048, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35193928

RESUMO

Chronic pain is sustained by a maladaptive form of neuronal plasticity occurring in all stations of the pain neuraxis, including cortical regions of the pain matrix. We report that chronic inflammatory pain induced by unilateral injection of complete Freund's adjuvant (CFA) in the hindpaw of male mice was associated with a progressive build-up of perineuronal nets (PNNs) in the contralateral somatosensory cortex (SSC), medial prefrontal cortex (mPFC), and reticular thalamic nucleus. In the SSC, the density of PNNs labeled by Wisteria floribunda agglutinin (WFA) was increased at both 3 and 7 d following CFA injection, but only after 7 d in the mPFC. The number of parvalbumin (PV)-positive interneurons enwrapped by WFA+/PNNs was also increased in all three brain regions of mice injected with CFA. Remarkably, PNN degradation induced by intracortical infusion of chondroitinase-ABC significantly reduced mechanical and thermal pain, and also reversed the increased frequency of IPSCs recorded in layer 5 pyramidal neurons of the contralateral SSC in CFA-injected mice. These findings suggest a possible relationship between cortical PNNs and nociceptive sensitization, and support the hypothesis that PNNs maintain their plasticity in the adult life and regulate cortical responses to sensory inputs.SIGNIFICANCE STATEMENT The brain extracellular matrix not only provides structural support, but also regulates synapse formation and function, and modulates neuronal excitability. We found that chronic inflammatory pain in mice enhances the density of perineuronal nets (PNNs) in the somatosensory cortex and medial prefrontal cortex. Remarkably, enzymatic degradation of PNNs in the somatosensory cortex caused analgesia and reversed alterations of inhibitory synaptic transmission associated with chronic pain. These findings disclose a novel mechanism of nociceptive sensitization and support a role for PNNs in mechanisms of neuronal plasticity in the adult brain.


Assuntos
Dor Crônica , Córtex Somatossensorial , Animais , Dor Crônica/induzido quimicamente , Dor Crônica/metabolismo , Matriz Extracelular/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos , Parvalbuminas/metabolismo , Córtex Somatossensorial/metabolismo
12.
Pharmacol Res ; 175: 105959, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34756924

RESUMO

Glioblastomas (GBMs), the most frequent brain tumours, are highly invasive and their prognosis is still poor despite the use of combination treatment. MG624 is a 4-oxystilbene derivative that is active on α7- and α9-containing neuronal nicotinic acetylcholine receptor (nAChR) subtypes. Hybridisation of MG624 with a non-nicotinic resveratrol-derived pro-oxidant mitocan has led to two novel compounds (StN-4 and StN-8) that are more potent than MG624 in reducing the viability of GBM cells, but less potent in reducing the viability of mouse astrocytes. Functional analysis of their activity on α7 receptors showed that StN-4 is a silent agonist, whereas StN-8 is a full antagonist, and neither alters intracellular [Ca2+] levels when acutely applied to U87MG cells. After 72 h of exposure, both compounds decreased U87MG cell proliferation, and pAKT and oxphos ATP levels, but only StN-4 led to a significant accumulation of cells in phase G1/G0 and increased apoptosis. One hour of exposure to either compound also decreased the mitochondrial and cytoplasmic ATP production of U87MG cells, and this was not paralleled by any increase in the production of reactive oxygen species. Knocking down the α9 subunit (which is expressed at relatively high levels in U87MG cells) decreased the potency of the effects of both compounds on cell viability, but cell proliferation, ATP production, pAKT levels were unaffected by the presence of the noncell-permeable α7/α9-selective antagonist αBungarotoxin. These last findings suggest that the anti-tumoral effects of StN-4 and StN-8 on GBM cells are not only due to their action on nAChRs, but also to other non-nicotinic mechanisms.


Assuntos
Compostos de Amônio/farmacologia , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Estilbenos/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Ligantes , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7/genética
13.
J Neuroinflammation ; 18(1): 44, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588880

RESUMO

BACKGROUND: Intracellular Ca2+ modulates several microglial activities, such as proliferation, migration, phagocytosis, and inflammatory mediator secretion. Extracellular ATP, the levels of which significantly change during epileptic seizures, activates specific receptors leading to an increase of intracellular free Ca2+ concentration ([Ca2+]i). Here, we aimed to functionally characterize human microglia obtained from cortices of subjects with temporal lobe epilepsy, focusing on the Ca2+-mediated response triggered by purinergic signaling. METHODS: Fura-2 based fluorescence microscopy was used to measure [Ca2+]i in primary cultures of human microglial cells obtained from surgical specimens. The perforated patch-clamp technique, which preserves the cytoplasmic milieu, was used to measure ATP-evoked Ca2+-dependent whole-cell currents. RESULTS: In human microglia extracellular ATP evoked [Ca2+]i increases depend on Ca2+ entry from the extracellular space and on Ca2+ mobilization from intracellular compartments. Extracellular ATP also induced a transient fivefold potentiation of the total transmembrane current, which was completely abolished when [Ca2+]i increases were prevented by removing external Ca2+ and using an intracellular Ca2+ chelator. TRAM-34, a selective KCa3.1 blocker, significantly reduced the ATP-induced current potentiation but did not abolish it. The removal of external Cl- in the presence of TRAM-34 further lowered the ATP-evoked effect. A direct comparison between the ATP-evoked mean current potentiation and mean Ca2+ transient amplitude revealed a linear correlation. Treatment of microglial cells with LPS for 48 h did not prevent the ATP-induced Ca2+ mobilization but completely abolished the ATP-mediated current potentiation. The absence of the Ca2+-evoked K+ current led to a less sustained ATP-evoked Ca2+ entry, as shown by the faster Ca2+ transient kinetics observed in LPS-treated microglia. CONCLUSIONS: Our study confirms a functional role for KCa3.1 channels in human microglia, linking ATP-evoked Ca2+ transients to changes in membrane conductance, with an inflammation-dependent mechanism, and suggests that during brain inflammation the KCa3.1-mediated microglial response to purinergic signaling may be reduced.


Assuntos
Trifosfato de Adenosina/farmacologia , Cálcio/metabolismo , Epilepsia Resistente a Medicamentos/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Microglia/metabolismo , Lobo Temporal/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas , Epilepsia Resistente a Medicamentos/patologia , Humanos , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/patologia
14.
J Med Chem ; 63(24): 15668-15692, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33325696

RESUMO

A series of diastereomeric 2-(2-pyrrolidinyl)-1,4-benzodioxanes bearing a small, hydrogen-bonding substituent at the 7-, 6-, or 5-position of benzodioxane have been studied for α4ß2 and α3ß4 nicotinic acetylcholine receptor affinity and activity. Analogous to C(5)H replacement with N and to a much greater extent than decoration at C(7), substitution at benzodioxane C(5) confers very high α4ß2/α3ß4 selectivity to the α4ß2 partial agonism. Docking into the two receptor structures recently determined by cryo-electron microscopy and site-directed mutagenesis at the minus ß2 side converge in indicating that the limited accommodation capacity of the ß2 pocket, compared to that of the ß4 pocket, makes substitution at C(5) rather than at more projecting C(7) position determinant for this pursued subtype selectivity.


Assuntos
Dioxanos/química , Agonistas Nicotínicos/química , Receptores Nicotínicos/química , Sítios de Ligação , Microscopia Crioeletrônica , Dioxanos/síntese química , Dioxanos/metabolismo , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Agonistas Nicotínicos/síntese química , Agonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/metabolismo , Pirrolidinas/química , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
15.
Ann Clin Transl Neurol ; 7(9): 1726-1731, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32761786

RESUMO

We compared GABAergic function and neuronal excitability in the hippocampal tissue of seven sporadic MTLE patients with a patient carrying a SCN1A loss-of-function mutation. All had excellent outcome from anterior temporal lobectomy, and neuropathological study always showed characteristic hippocampal sclerosis (Hs). Compared to MTLE patients, there was a more severe impairment of GABAergic transmission, due to the lower GABAergic activity related to the NaV 1.1 loss-of-function, in addition to the typical GABA-current rundown, a hallmark of sporadic MTLE. Our results give evidence that a pharmacological rescuing of the GABAergic dysfunction may represent a promising strategy for the treatment of these patients.


Assuntos
Epilepsia do Lobo Temporal , Hipocampo , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Ácido gama-Aminobutírico/metabolismo , Adulto , Lobectomia Temporal Anterior , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Mutação com Perda de Função , Masculino , Técnicas de Patch-Clamp , Esclerose/patologia
16.
Schizophr Bull ; 46(6): 1471-1481, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32506121

RESUMO

Cinnabarinic acid (CA) is a kynurenine metabolite that activates mGlu4 metabotropic glutamate receptors. Using a highly sensitive ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS-MS) method, we found that CA is present in trace amounts in human brain tissue. CA levels were largely reduced in the prefrontal cortex (PFC) of individuals affected by schizophrenia. This reduction did not correlate with age, sex, duration of the disease, and duration and type of antipsychotic medication and might, therefore, represent a trait of schizophrenia. Interestingly, systemic treatment with low doses of CA (<1 mg/kg, i.p.) showed robust efficacy in several behavioral tests useful to study antipsychotic-like activity in mice and rats and attenuated MK-801-evoked glutamate release. CA failed to display antipsychotic-like activity and inhibit excitatory synaptic transmission in mice lacking mGlu4 receptors. These findings suggest that CA is a potent endogenous antipsychotic-like molecule and reduced CA levels in the PFC might contribute to the pathophysiology of schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Cinurenina/metabolismo , Oxazinas/metabolismo , Oxazinas/farmacologia , Córtex Pré-Frontal/metabolismo , Receptores de Glutamato Metabotrópico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Adulto , Animais , Antipsicóticos/administração & dosagem , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Oxazinas/administração & dosagem , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/deficiência , Bancos de Tecidos
17.
J Neural Eng ; 17(3): 036032, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32485702

RESUMO

OBJECTIVE: The development of electrode arrays able to reliably record brain electrical activity is a critical issue in brain machine interface (BMI) technology. In the present study we undertook a comprehensive physico-chemical, physiological, histological and immunohistochemical characterization of new single-walled carbon nanotubes (SWCNT)-based electrode arrays grafted onto medium-density polyethylene (MD-PE) films. APPROACH: The long-term electrical stability, flexibility, and biocompatibility of the SWCNT arrays were investigated in vivo in laboratory rats by two-months recording and analysis of subdural electrocorticogram (ECoG). Ex-vivo characterization of a thin flexible and single probe SWCNT/polymer electrode is also provided. MAIN RESULTS: The SWCNT arrays were able to capture high quality and very stable ECoG signals across 8 weeks. The histological and immunohistochemical analyses demonstrated that SWCNT arrays show promising biocompatibility properties and may be used in chronic conditions. The SWCNT-based arrays are flexible and stretchable, providing low electrode-tissue impedance, and, therefore, high compliance with the irregular topography of the cortical surface. Finally, reliable evoked synaptic local field potentials in rat brain slices were recorded using a special SWCNT-polymer-based flexible electrode. SIGNIFICANCE: The results demonstrate that the SWCNT arrays grafted in MD-PE are suitable for manufacturing flexible devices for subdural ECoG recording and might represent promising candidates for long-term neural implants for epilepsy monitoring or neuroprosthetic BMI.


Assuntos
Interfaces Cérebro-Computador , Nanotubos de Carbono , Animais , Córtex Cerebral , Eletrodos , Polímeros , Ratos
18.
Parkinsonism Relat Disord ; 72: 75-79, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32120303

RESUMO

OBJECTIVE: To investigate the molecular cause(s) underlying a severe form of infantile-onset parkinsonism and characterize functionally the identified variants. METHODS: A trio-based whole exome sequencing (WES) approach was used to identify the candidate variants underlying the disorder. In silico modeling, and in vitro and in vivo studies were performed to explore the impact of these variants on protein function and relevant cellular processes. RESULTS: WES analysis identified biallelic variants in WARS2, encoding the mitochondrial tryptophanyl tRNA synthetase (mtTrpRS), a gene whose mutations have recently been associated with multiple neurological phenotypes, including childhood-onset, levodopa-responsive or unresponsive parkinsonism in a few patients. A substantial reduction of mtTrpRS levels in mitochondria and reduced OXPHOS function was demonstrated, supporting their pathogenicity. Based on the infantile-onset and severity of the phenotype, additional variants were considered as possible genetic modifiers. Functional assessment of a selected panel of candidates pointed to a de novo missense mutation in CHRNA6, encoding the α6 subunit of neuronal nicotinic receptors, which are involved in the cholinergic modulation of dopamine release in the striatum, as a second event likely contributing to the phenotype. In silico, in vitro (Xenopus oocytes and GH4C1 cells) and in vivo (C. elegans) analyses demonstrated the disruptive effects of the mutation on acetylcholine receptor structure and function. CONCLUSION: Our findings consolidate the association between biallelic WARS2 mutations and movement disorders, and suggest CHRNA6 as a genetic modifier of the phenotype.


Assuntos
Transtornos Parkinsonianos/genética , Receptores Nicotínicos/genética , Triptofano-tRNA Ligase/genética , Idade de Início , Criança , Humanos , Masculino , Mutação , Índice de Gravidade de Doença , Sequenciamento do Exoma
19.
J Am Heart Assoc ; 9(5): e014923, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32078787

RESUMO

Background High blood pressure (BP) has long been recognized as a major health threat and, particularly, a major risk factor for stroke, cardiovascular disease, and end-organ damage. However, the identification of a novel, alternative, integrative approach for the control of BP and cardiovascular protection is still needed. Methods and Results Sixty-nine uncontrolled hypertension patients, aged 40 to 68 years, on antihypertensive medication were enrolled in 2 double-blind studies. Forty-five were randomized to placebo or a new nutraceutical combination named AkP05, and BP, endothelial function, and circulating nitric oxide were assessed before and at the end of 4 weeks of treatment. Twenty-four patients were randomized to diuretic or AkP05 for 4 weeks and underwent a cardiopulmonary exercise test to evaluate the effects of AkP05 on functional capacity of the cardiovascular, pulmonary, and muscular systems. Vascular and molecular studies were undertaken on mice to characterize the action of the single compounds contained in the AkP05 nutraceutical combination. AkP05 supplementation reduced BP, improved endothelial function, and increased nitric oxide release; cardiopulmonary exercise test revealed that AkP05 increased maximum O2 uptake, stress tolerance, and maximal power output. In mice, AkP05 reduced BP and improved endothelial function, evoking increased nitric oxide release through the PKCα/Akt/endothelial nitric oxide synthase pathway and reducing reactive oxygen species production via NADPH-oxidase inhibition. These effects were mediated by synergism of the single compounds of AkP05. Conclusions This is the first study reporting positive effects of a nutraceutical combination on the vasculature and exercise tolerance in treated hypertensive patients. Our findings suggest that AkP05 may be used as an adjunct for the improvement of cardiovascular protection and to better control BP in uncontrolled hypertension.


Assuntos
Suplementos Nutricionais , Tolerância ao Exercício/fisiologia , Hipertensão/fisiopatologia , Hipertensão/terapia , Óxido Nítrico/sangue , Preparações de Plantas/uso terapêutico , Adulto , Idoso , Animais , Bacopa , Camellia sinensis , Método Duplo-Cego , Teste de Esforço , Feminino , Ginkgo biloba , Humanos , Hipertensão/sangue , Masculino , Camundongos , Pessoa de Meia-Idade , Fosfatidilserinas/uso terapêutico , Fitoterapia , Espécies Reativas de Oxigênio/sangue
20.
Neuroscience ; 439: 117-124, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30999028

RESUMO

Although Ca2+ influx through muscle nAChR-channels has been described over the past 40 years, its functions remain still poorly understood. In this review we suggest possible roles of Ca2+ entry at all stages of muscle development, summarizing the evidence present in literature. nAChRs are expressed in myoblasts prior to fusion, and can be activated in the absence of an ACh-releasing nerve terminal, with Ca2+ influx likely contributing to regulate cell fusion. Upon establishment of nerve-muscle contact, Ca2+ influx contributes to orchestrate the signaling required for the correct formation of the neuromuscular junction. Finally, in the mature synapse, Ca2+ entry through postsynaptic nAChR-channels - highly Ca2+ permeable, in particular in humans - acts on K+ and Na+ channels to shape endplate excitability. However, when genetic defects cause excessive channel activation, Ca2+ influx becomes toxic and causes endplate myopathy. Throughout the review, we highlight how Ricardo Miledi has contributed to construct this whole body of knowledge, from the initial description of Ca2+ permeability of endplate nAChR channels, to the rationale for the treatment of endplate excitotoxic damage under pathological conditions. This article is part of a Special Issue entitled: SI: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.


Assuntos
Cálcio , Receptores Nicotínicos , Cálcio/metabolismo , Canais de Cálcio , Humanos , Músculos , Receptores Nicotínicos/metabolismo , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA