Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 19(4): 567-578, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30706794

RESUMO

BACKGROUND: In a previous study, we synthesised a new spiroketal derivative, inspired to natural products, that has shown high antiproliferative activity, potent telomerase inhibition and proapoptotic activity on several human cell lines. OBJECTIVE: This work focused on the study of in vivo antitumor effect of this synthetic spiroketal on a murine melanoma model. In order to shed additional light on the origin of the antitumor effect, in vitro studies were performed. METHODS: Spiroketal was administered to B16F10 melanoma mice at a dose of 5 mg/Kg body weight via intraperitoneum at alternate days for 15 days. Tumor volume measures were made every 2 days starting after 12 days from cells injection. The effects of the spiroketal on tumor growth inhibition, apoptosis induction, and cell cycle modification were investigated in vitro on B16 cells. HIF1α gene expression, the inhibition of cells migration and the changes induced in cytoskeleton conformation were evaluated. RESULTS: Spiroketal displayed proapoptotic activity and high antitumor activity in B16 cells with nanomolar IC50. Moreover it has shown to inhibit cell migration, to strongly reduce the HIF1α expression and to induce strongly deterioration of cytoskeleton structure. A potent dose-dependent antitumor efficacy in syngenic B16/C57BL/6J murine model of melanoma was observed with the suppression of tumor growth by an average of 90% at a dose of 5 mg/kg. CONCLUSION: The synthesized spiroketal shows high antitumor activity in the B16 cells in vitro at nM concentration and a dose-dependent antitumor efficacy in syngenic B16/C57BL/6J mice. The results suggest that this natural product inspired spiroketal may have a potential application in melanoma therapy.


Assuntos
Antineoplásicos/farmacologia , Furanos/farmacologia , Melanoma Experimental/patologia , Compostos de Espiro/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
2.
J Cell Physiol ; 212(3): 610-25, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17458892

RESUMO

Serum deprivation induced in human lymphoblastoid Raji cells oxidative stress-associated apoptotic death and G0/G1 cell cycle arrest. Addition into culture medium of the immunomodulatory protein Seminal vesicle protein 4 (SV-IV) protected these cells against apoptosis but not against cycle arrest. The antiapoptotic activity was related to: (1) decrease of endocellular reactive Oxygen species (ROS) (2) increase of mRNAs encoding anti-oxidant enzymes (catalase, G6PD) and antiapoptotic proteins (survivin, cox-1, Hsp70, c-Fos); (3) decrease of mRNAs encoding proapoptotic proteins (c-myc, Bax, caspase-3, Apaf-1). The biochemical changes underlaying these effects were probably induced by a protein tyrosine kinase (PTK) activity triggered by the binding of SV-IV to its putative plasma membrane receptors. The ineffectiveness of SV-IV to abrogate the cycle arrest was accounted for by its downregulating effects on D1,3/E G1-cyclins and CdK2/4 gene expression, ppRb/pRb ratio, and intracellular ROS concentration. In conclusion, these experiments: (1) prove that SV-IV acts as a cell survival factor; (2) suggest the involvement of a PTK in SV-IV signaling; (3) point to cell cycle-linked enzyme inhibition as responsible for cycle arrest; (4) provide a model to dissect the cycle arrest and apoptosis induced by serum withdrawal; (5) imply a possible role of SV-IV in the survival of hemiallogenic implanting embryos.


Assuntos
Antioxidantes/metabolismo , Apoptose , Proliferação de Células , Implantação do Embrião , Fase G1 , Leucócitos Mononucleares/metabolismo , Fase de Repouso do Ciclo Celular , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Catalase/genética , Catalase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Meios de Cultura Livres de Soro/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Citotoxicidade Imunológica , Fragmentação do DNA , Técnicas de Cultura Embrionária , Implantação do Embrião/efeitos dos fármacos , Desenvolvimento Embrionário , Fase G1/efeitos dos fármacos , Instabilidade Genômica , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/enzimologia , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Proteína do Retinoblastoma/metabolismo , Proteínas Secretadas pela Vesícula Seminal/farmacologia , Soro/metabolismo , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA