Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Imaging (Bellingham) ; 10(4): 044504, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37608852

RESUMO

Purpose: Image-based prediction of coronavirus disease 2019 (COVID-19) severity and resource needs can be an important means to address the COVID-19 pandemic. In this study, we propose an artificial intelligence/machine learning (AI/ML) COVID-19 prognosis method to predict patients' needs for intensive care by analyzing chest X-ray radiography (CXR) images using deep learning. Approach: The dataset consisted of 8357 CXR exams from 5046 COVID-19-positive patients as confirmed by reverse transcription polymerase chain reaction (RT-PCR) tests for the SARS-CoV-2 virus with a training/validation/test split of 64%/16%/20% on a by patient level. Our model involved a DenseNet121 network with a sequential transfer learning technique employed to train on a sequence of gradually more specific and complex tasks: (1) fine-tuning a model pretrained on ImageNet using a previously established CXR dataset with a broad spectrum of pathologies; (2) refining on another established dataset to detect pneumonia; and (3) fine-tuning using our in-house training/validation datasets to predict patients' needs for intensive care within 24, 48, 72, and 96 h following the CXR exams. The classification performances were evaluated on our independent test set (CXR exams of 1048 patients) using the area under the receiver operating characteristic curve (AUC) as the figure of merit in the task of distinguishing between those COVID-19-positive patients who required intensive care following the imaging exam and those who did not. Results: Our proposed AI/ML model achieved an AUC (95% confidence interval) of 0.78 (0.74, 0.81) when predicting the need for intensive care 24 h in advance, and at least 0.76 (0.73, 0.80) for 48 h or more in advance using predictions based on the AI prognostic marker derived from CXR images. Conclusions: This AI/ML prediction model for patients' needs for intensive care has the potential to support both clinical decision-making and resource management.

3.
Neurocrit Care ; 36(3): 974-982, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873672

RESUMO

BACKGROUND: Establishing whether a patient who survived a cardiac arrest has suffered hypoxic-ischemic brain injury (HIBI) shortly after return of spontaneous circulation (ROSC) can be of paramount importance for informing families and identifying patients who may benefit the most from neuroprotective therapies. We hypothesize that using deep transfer learning on normal-appearing findings on head computed tomography (HCT) scans performed after ROSC would allow us to identify early evidence of HIBI. METHODS: We analyzed 54 adult comatose survivors of cardiac arrest for whom both an initial HCT scan, done early after ROSC, and a follow-up HCT scan were available. The initial HCT scan of each included patient was read as normal by a board-certified neuroradiologist. Deep transfer learning was used to evaluate the initial HCT scan and predict progression of HIBI on the follow-up HCT scan. A naive set of 16 additional patients were used for external validation of the model. RESULTS: The median age (interquartile range) of our cohort was 61 (16) years, and 25 (46%) patients were female. Although findings of all initial HCT scans appeared normal, follow-up HCT scans showed signs of HIBI in 29 (54%) patients (computed tomography progression). Evaluating the first HCT scan with deep transfer learning accurately predicted progression to HIBI. The deep learning score was the most significant predictor of progression (area under the receiver operating characteristic curve = 0.96 [95% confidence interval 0.91-1.00]), with a deep learning score of 0.494 having a sensitivity of 1.00, specificity of 0.88, accuracy of 0.94, and positive predictive value of 0.91. An additional assessment of an independent test set confirmed high performance (area under the receiver operating characteristic curve = 0.90 [95% confidence interval 0.74-1.00]). CONCLUSIONS: Deep transfer learning used to evaluate normal-appearing findings on HCT scans obtained early after ROSC in comatose survivors of cardiac arrest accurately identifies patients who progress to show radiographic evidence of HIBI on follow-up HCT scans.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Parada Cardíaca Extra-Hospitalar , Adulto , Coma/diagnóstico por imagem , Coma/etiologia , Feminino , Humanos , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/etiologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Parada Cardíaca Extra-Hospitalar/terapia , Estudos Retrospectivos
4.
Med Phys ; 49(1): 1-14, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34796530

RESUMO

The development of medical imaging artificial intelligence (AI) systems for evaluating COVID-19 patients has demonstrated potential for improving clinical decision making and assessing patient outcomes during the recent COVID-19 pandemic. These have been applied to many medical imaging tasks, including disease diagnosis and patient prognosis, as well as augmented other clinical measurements to better inform treatment decisions. Because these systems are used in life-or-death decisions, clinical implementation relies on user trust in the AI output. This has caused many developers to utilize explainability techniques in an attempt to help a user understand when an AI algorithm is likely to succeed as well as which cases may be problematic for automatic assessment, thus increasing the potential for rapid clinical translation. AI application to COVID-19 has been marred with controversy recently. This review discusses several aspects of explainable and interpretable AI as it pertains to the evaluation of COVID-19 disease and it can restore trust in AI application to this disease. This includes the identification of common tasks that are relevant to explainable medical imaging AI, an overview of several modern approaches for producing explainable output as appropriate for a given imaging scenario, a discussion of how to evaluate explainable AI, and recommendations for best practices in explainable/interpretable AI implementation. This review will allow developers of AI systems for COVID-19 to quickly understand the basics of several explainable AI techniques and assist in the selection of an approach that is both appropriate and effective for a given scenario.


Assuntos
Inteligência Artificial , COVID-19 , Diagnóstico por Imagem , Humanos , Pandemias , SARS-CoV-2
5.
J Med Imaging (Bellingham) ; 8(Suppl 1): 014501, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33415179

RESUMO

Purpose: Given the recent COVID-19 pandemic and its stress on global medical resources, presented here is the development of a machine intelligent method for thoracic computed tomography (CT) to inform management of patients on steroid treatment. Approach: Transfer learning has demonstrated strong performance when applied to medical imaging, particularly when only limited data are available. A cascaded transfer learning approach extracted quantitative features from thoracic CT sections using a fine-tuned VGG19 network. The extracted slice features were axially pooled to provide a CT-scan-level representation of thoracic characteristics and a support vector machine was trained to distinguish between patients who required steroid administration and those who did not, with performance evaluated through receiver operating characteristic (ROC) curve analysis. Least-squares fitting was used to assess temporal trends using the transfer learning approach, providing a preliminary method for monitoring disease progression. Results: In the task of identifying patients who should receive steroid treatments, this approach yielded an area under the ROC curve of 0.85 ± 0.10 and demonstrated significant separation between patients who received steroids and those who did not. Furthermore, temporal trend analysis of the prediction score matched expected progression during hospitalization for both groups, with separation at early timepoints prior to convergence near the end of the duration of hospitalization. Conclusions: The proposed cascade deep learning method has strong clinical potential for informing clinical decision-making and monitoring patient treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA