Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12363, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35859006

RESUMO

The epithelial-to-mesenchymal transition (EMT) is a critical process by which cancer cells acquire malignant features. However, the molecular mechanism and functional implications of EMT and the mesenchymal-to-epithelial transition (MET) in tumor progression remain elusive. In this study, we established two aggressive cancer cell lines from the human oral cancer cell line SAS, mesenchymal-like SAS-m4 and epithelial-like SAS-δ. SAS-δ is a revertant cell obtained by inducing MET in SAS-m4. SAS-δ, but not SAS-m4, exhibited abnormal cell growth, including piled-up overgrowth and invasive tumor formation in the tongues of nude mice, suggesting that SAS-δ represented more advanced cancer cells than the parental SAS cells. EMT-related transcriptional factor SLUG is phosphorylated at T208 and partly stabilized by the Hippo pathway kinases, LATS1 and LATS2. Depletion of SLUG promoted the invasive activity of SAS-δ by increasing the protein levels of LATS1/2 and the proportion of the phosphorylated form among total SLUG protein. Our results suggest that the LATS1/2-SLUG axis regulates the transition of SAS cells to the advanced stage via repeated switching between EMT and MET. Therefore, an anti-SLUG-pT208 antibody would be valuable not alone as a malignant tumor marker antibody but also as a prognostic tool for patients with malignant disease.


Assuntos
Neoplasias Bucais , Proteínas Serina-Treonina Quinases , Fatores de Transcrição da Família Snail , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Neoplasias Bucais/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Proteínas Supressoras de Tumor
2.
Oncotarget ; 9(74): 33931-33946, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30338036

RESUMO

Three-dimensional (3D) cell culture systems have been used to obtain multicellular spheroidal cell aggregates, or spheroids, from cancer cells. However, it is difficult to efficiently prepare large tumor-derived spheroids from cancer cells. To circumvent this problem, we here used a tool equipped with removal membrane, called Spheroid Catch, for the selection and enrichment of large-sized and/or size-matched spheroids from human squamous cell carcinoma (SAS cells) without loss of recovery. After a five-round process of selection and enrichment, we successfully isolated a subpopulation of SAS cells with augmented spheroid-forming capability, named eSAS: the efficiency of spheroid formation is 28.5% (eSAS) vs 16.8% (parental SAS). Notably, we found that some of eSAS cells survived after exposure of high doses of cisplatin in 3D culture. Moreover, orthotopic implantation by injecting eSAS cells into the tongues of nude mice showed reduced survival rate and increased tumor growth compared with those of nude mice injected with SAS cells. These results suggest that spheroids exhibiting properties of higher spheroid forming capacity can be efficiently collected by using Spheroid Catch. Indeed, genome-wide cDNA microarray and western blot analyses demonstrated higher mRNA and protein levels of hedgehog acyltransferase (HHAT), which is associated with stem maintenance in cell carcinoma by catalysing the N-palmitoylation of Hedgehog proteins, in eSAS cells than in SAS cells. We propose that Spheroid Catch could be useful for the study of spheroids, and potentially organoids, in the basic and clinical sciences, as an alternative method to other type of cell strainers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA