Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953239

RESUMO

Resonance frequency analysis (RFA) is valuable for assessing implant status. In a previous investigation, acetabular cup fixation was assessed using laser RFA and the pull-down force was predicted in an in vitro setting. While the pull-down force alone is sufficient for initial fixation evaluation, it is desirable to evaluate the bone strength of the foundation for subsequent fixation. Diminished bone quality causes micromotion, migration, and protracted osseointegration, consequently elevating susceptibility to periprosthetic fractures and failure of ingrained trabecular bone. Limited research exists on the evaluation of bone mineral density (BMD) around the cup using RFA. For in vivo application of laser RFA, we implemented the sweep pulse excitation method and engineered an innovative laser RFA device having low laser energy and small dimensions. We focused on a specific frequency range (2500-4500 Hz), where the peak frequency was presumed to be influenced by foundational density. Quantitative computed tomography with a phantom was employed to assess periprosthetic BMD. Correlation between the resonance frequency within the designated range and the density around the cup was evaluated both in the laboratory and in vivo using the novel laser RFA device. The Kruskal-Wallis test showed robust correlations in both experiments (laboratory study: R = 0.728, p < 0.001; in vivo study: R = 0.619, p < 0.001). Our laser RFA system can assess the quality of bone surrounding the cup. Laser RFA holds promise in predicting the risk of loosening and might aid in the decision-making process for additional fixation through screw insertion.

2.
Case Rep Orthop ; 2018: 2328014, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538877

RESUMO

Well leg compartment syndrome (WLCS) is a rare but severe complication after the surgery in lithotomy position. We present a case of bilateral WLCS that occurred after the prolonged urologic surgery in lithotomy position. A 50-year-old man complained of severe bilateral lower leg pain and swelling sixteen hours after the surgery. Physical examination, elevated serum creatine kinase value, contrasting computed tomography, and elevated compartment pressure strongly suggested the development of bilateral WLCS localized in the anterior and lateral compartments. Emergent single-incision fasciotomy was performed four hours after diagnosis. The patient was treated successfully without any neuromuscular dysfunction. An early and accurate diagnosis is important to avoid the delay of treatment and development of neuromuscular dysfunction.

3.
Bone Rep ; 9: 11-18, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29955645

RESUMO

Osteoporosis is a skeletal disorder characterized by compromised bone strength and increased risk of fracture. Low bone mass and/or pre-existing bone fragility fractures serve as diagnostic criteria in deciding when to start medication for osteoporosis. Although osteoporosis is a metabolic disorder, metabolic markers to predict reduced bone mass are unknown. Here, we show serum metabolomics profiles of women grouped as pre-menopausal with normal bone mineral density (BMD) (normal estrogen and normal BMD; NN), post-menopausal with normal BMD (low estrogen and normal BMD; LN) or post-menopausal with low BMD (low estrogen and low BMD; LL) using comprehensive metabolomics analysis. To do so, we enrolled healthy volunteer and osteoporosis patient female subjects, surveyed them with a questionnaire, measured their BMD, and then undertook a comprehensive metabolomics analysis of sera of the three groups named above. We identified 24 metabolites whose levels differed significantly between NN/LN and NN/LL groups, as well as 18 or 10 metabolites whose levels differed significantly between NN/LN and LN/LL, or LN/LL and NN/LN groups, respectively. Our data shows metabolomics changes represent useful markers to predict estrogen deficiency and/or bone loss.

4.
Sci Rep ; 7(1): 15035, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118346

RESUMO

Idiopathic osteonecrosis of the femoral head (IONFH) is an ischemic disorder that causes bone necrosis of the femoral head, resulting in hip joint dysfunction. IONFH is a polygenic disease and steroid and alcohol have already known to increase its risk; however, the mechanism of IONFH remains to be elucidated. We performed a genome-wide association study using ~60,000 subjects and found two novel loci on chromosome 20q12 and 12q24. Big data analyses identified LINC01370 as a candidate susceptibility gene in the 20q12 locus. Stratified analysis by IONFH risk factors suggested that the 12q24 locus was associated with IONFH through drinking capacity. Our findings would shed new light on pathophysiology of IONFH.


Assuntos
Necrose da Cabeça do Fêmur/genética , Cabeça do Fêmur/metabolismo , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Consumo de Bebidas Alcoólicas/genética , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 20/genética , Feminino , Cabeça do Fêmur/patologia , Necrose da Cabeça do Fêmur/complicações , Necrose da Cabeça do Fêmur/diagnóstico , Loci Gênicos/genética , Humanos , Masculino , Herança Multifatorial/genética , Osteoartrite do Quadril/diagnóstico , Osteoartrite do Quadril/etiologia
5.
Bone ; 95: 1-4, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27989648

RESUMO

Osteoporosis is characterized as a metabolic disorder of bone tissue, and various metabolic markers are now available to support its diagnosis and evaluate treatment effects. Substances produced as end products of metabolomic activities are the correlated factors to the biological or metabolic status, and thus, metabolites are considered highly sensitive markers of particular pathological states, including osteoporosis. Here we undertook comprehensive serum metabolomics analysis in postmenopausal women with or without low bone mineral density (low BMD vs controls) for the first time using capillary electrophoresis/mass spectrometry. Among the metabolites tested, 57 were detected in sera. Levels of hydroxyproline, Gly-Gly and cystine, differed significantly between groups, with Gly-Gly and cystine significantly lower in the low BMD group and hydroxyproline, a reported marker of osteoporosis, significantly higher. Levels of TRACP5b, a bone resorption marker, were significantly higher in the low BMD group, supporting the study's validity. Taken together, our findings represent novel metabolomic profiling in low BMD in postmenopausal women.


Assuntos
Densidade Óssea , Metabolômica , Pós-Menopausa/sangue , Pós-Menopausa/fisiologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Metaboloma , Pessoa de Meia-Idade
6.
Keio J Med ; 65(2): 33-8, 2016 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26853879

RESUMO

Low serum 25-hydroxyvitamin D (25(OH)D) levels are implicated as a risk factor for hip and spine fractures. Studies of the relation between 25(OH)D levels and fractures have primarily involved elderly osteoporosis patients or patients with fractures; however, the serum 25(OH)D and parathyroid hormone (PTH) status in younger adult populations remains largely unknown. We evaluated serum 25(OH)D and intact PTH levels in 411 women aged 39-64 years who were not receiving medication for osteoporosis or other bone diseases. Serum 25(OH)D levels were positively correlated with age (P = 0.019), whereas intact PTH levels were inversely correlated with 25(OH)D levels (P < 0.001). Thus, low vitamin D levels with high intact PTH levels were more common in younger than in older women. Our data show that serum 25(OH)D insufficiency could be a more serious concern in the younger population than had been previously anticipated. Because serum 25(OH)D insufficiency is reportedly a risk factor for hip and spine fracture, the number of fracture patients could increase in the future, suggesting that we may need to correct the serum vitamin D/intact PTH status to prevent future osteoporosis.


Assuntos
Fraturas do Quadril/prevenção & controle , Osteoporose/prevenção & controle , Hormônio Paratireóideo/sangue , Fraturas da Coluna Vertebral/prevenção & controle , Deficiência de Vitamina D/diagnóstico , Vitamina D/análogos & derivados , Adulto , Fatores Etários , Feminino , Humanos , Pessoa de Meia-Idade , Pós-Menopausa , Pré-Menopausa , Prevenção Primária , Fatores de Risco , Vitamina D/sangue , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/fisiopatologia
7.
J Bone Miner Metab ; 34(5): 526-31, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26202855

RESUMO

The increasing number of osteoporosis patients is a pressing issue worldwide. Osteoporosis frequently causes fragility fractures, limiting activities of daily life and increasing mortality. Many osteoporosis patients take numerous medicines due to other health issues; thus, it would be preferable if a single medicine could ameliorate osteoporosis and other conditions. Here, we screened 96 randomly selected drugs targeting various diseases for their ability to inhibit differentiation of osteoclasts, which play a pivotal role in development of osteoporosis, and identified methotrexate (MTX), as a potential inhibitor. MTX is currently used to treat sarcomas or leukemic malignancies or auto-inflammatory diseases such as rheumatoid arthritis (RA) through its anti-proliferative and immunosuppressive activities; however, a direct effect on osteoclast differentiation has not been shown. Here, we report that osteoclast formation and expression of osteoclastic genes such as NFATc1 and DC-STAMP, which are induced by the cytokine RANKL, are significantly inhibited by MTX. We found that RANKL-dependent calcium (Ca) influx into osteoclast progenitors was significantly inhibited by MTX. RA patients often develop osteoporosis, and osteoclasts are reportedly required for joint destruction; thus, MTX treatment could have a beneficial effect on RA patients exhibiting high osteoclast activity by preventing both osteoporosis and joint destruction.


Assuntos
Cálcio/metabolismo , Metotrexato/farmacologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Células Cultivadas , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Ligante RANK/farmacologia , Células-Tronco/metabolismo
8.
J Biol Chem ; 290(28): 17106-15, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25998127

RESUMO

Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition.


Assuntos
Hiperglicemia/metabolismo , Hiperglicemia/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patologia , Sorbitol/metabolismo , Aldeído Redutase/antagonistas & inibidores , Animais , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Desdiferenciação Celular/fisiologia , Células Cultivadas , Doenças Desmielinizantes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/patologia , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Ratos , Rodanina/análogos & derivados , Rodanina/farmacologia , Células de Schwann/efeitos dos fármacos , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Tiazolidinas/farmacologia , Vitamina D/análogos & derivados
9.
Biochem Biophys Res Commun ; 457(3): 451-6, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25597995

RESUMO

Bone mass is tightly controlled by a balance between osteoclast and osteoblast activities. Although these cell types mature via different pathways, some factors reportedly regulate differentiation of both. Here, in a search for factors governing osteoblastogenesis but also expressed in osteoclasts to control both cell types by one molecule, we identified B cell lymphoma 6 (Bcl6) as one of those factors and show that it promotes osteoblast differentiation. Bcl6 was previously shown to negatively regulate osteoclastogenesis. We report that lack of Bcl6 results in significant inhibition of osteoblastogensis in vivo and in vitro and in defects in secondary ossification center formation in vivo. Signal transducer and activator of transcription 1 (Stat1) reportedly attenuates osteoblast differentiation by inhibiting nuclear translocation of runt-related transcription factor 2 (Runx2), which is essential for osteoblast differentiation. We found that lack of Bcl6 resulted in significant elevation of Stat1 mRNA and protein expression in osteoblasts and showed that Stat1 is a direct target of Bcl6 using a chromatin immune-precipitation assay. Mice lacking both Bcl6 and Stat1 (DKO) exhibited significant rescue of bone mass and osteoblastic parameters as well as partial rescue of secondary ossification center formation compared with Bcl6-deficient mice in vivo. Altered osteoblastogenesis in Bcl6-deficient cells was also restored in DKO in vitro. Thus, Bcl6 plays crucial roles in regulating both osteoblast activation and osteoclast inhibition.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Fator de Transcrição STAT1/antagonistas & inibidores , Células 3T3 , Animais , Sítios de Ligação/genética , Remodelação Óssea/genética , Remodelação Óssea/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/citologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-6 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genética
10.
J Biol Chem ; 290(2): 716-26, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25404736

RESUMO

Formation of foreign body giant cells (FBGCs) occurs following implantation of medical devices such as artificial joints and is implicated in implant failure associated with inflammation or microbial infection. Two major macrophage subpopulations, M1 and M2, play different roles in inflammation and wound healing, respectively. Therefore, M1/M2 polarization is crucial for the development of various inflammation-related diseases. Here, we show that FBGCs do not resorb bone but rather express M2 macrophage-like wound healing and inflammation-terminating molecules in vitro. We also found that FBGC formation was significantly inhibited by inflammatory cytokines or infection mimetics in vitro. Interleukin-1 receptor-associated kinase-4 (IRAK4) deficiency did not alter osteoclast formation in vitro, and IRAK4-deficient mice showed normal bone mineral density in vivo. However, IRAK4-deficient mice were protected from excessive osteoclastogenesis induced by IL-1ß in vitro or by LPS, an infection mimetic of Gram-negative bacteria, in vivo. Furthermore, IRAK4 deficiency restored FBGC formation and expression of M2 macrophage markers inhibited by inflammatory cytokines in vitro or by LPS in vivo. Our results demonstrate that osteoclasts and FBGCs are reciprocally regulated and identify IRAK4 as a potential therapeutic target to inhibit stimulated osteoclastogenesis and rescue inhibited FBGC formation under inflammatory and infectious conditions without altering physiological bone resorption.


Assuntos
Diferenciação Celular/genética , Células Gigantes de Corpo Estranho/metabolismo , Inflamação/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inflamação/patologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Macrófagos/metabolismo , Camundongos , Osteoclastos/metabolismo , Osteólise/genética , Osteólise/patologia
11.
J Bone Miner Metab ; 33(2): 135-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24633489

RESUMO

Rheumatoid arthritis (RA) is a multifactorial disease caused by genetic and environmental factors: however, precise molecular mechanisms underlying its pathogenesis remain largely unknown. Treatment of RA patients with disease-modifying biological agents occasionally promotes Mycobacterium tuberculosis infection or recurrence of M. tuberculosis, although how infection promotes arthritis has not been characterized. Here, we found that arthritis phenotypes in a collagen-induced mouse model were evident only when killed M. tuberculosis was co-administered. Treatment of cultured macrophages with killed M. tuberculosis promoted production of IL-6, a major inflammatory cytokine in RA patients, while similar treatment of TLR2-deficient macrophages failed to induce IL-6 expression. Arthritis scores, joint destruction, and serum IL-6 levels were all significantly ameliorated in TLR2-deficient compared with wild-type mice, even in animals treated with killed M. tuberculosis. These results suggest that M. tuberculosis infection enhances arthritis development and that TLR2 could serve as a therapeutic target for some forms of the disease.


Assuntos
Artrite Reumatoide/mortalidade , Artrite Reumatoide/patologia , Mycobacterium tuberculosis/fisiologia , Receptor 2 Toll-Like/metabolismo , Tuberculose/microbiologia , Tuberculose/patologia , Animais , Artrite Reumatoide/metabolismo , Células Cultivadas , Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Tuberculose/metabolismo
12.
PLoS One ; 9(11): e111845, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25375896

RESUMO

Although both an active form of the vitamin D metabolite, 1,25(OH)2D3, and the vitamin D analogue, ED71 have been used to treat osteoporosis, anti-bone resorbing activity is reportedly seen only in ED71- but not in 1,25(OH)2D3 -treated patients. In addition, how ED71 inhibits osteoclast activity in patients has not been fully characterized. Recently, HIF1α expression in osteoclasts was demonstrated to be required for development of post-menopausal osteoporosis. Here we show that ED71 but not 1,25(OH)2D3, suppress HIF1α protein expression in osteoclasts in vitro. We found that 1,25(OH)2D3 or ED71 function in osteoclasts requires the vitamin D receptor (VDR). ED71 was significantly less effective in inhibiting M-CSF and RANKL-stimulated osteoclastogenesis than was 1,25(OH)2D3 in vitro. Downregulation of c-Fos protein and induction of Ifnß mRNA in osteoclasts, both of which reportedly block osteoclastogenesis induced by 1,25(OH)2D3 in vitro, were both significantly higher following treatment with 1,25(OH)2D3 than with ED71. Thus, suppression of HIF1α protein activity in osteoclasts in vitro, which is more efficiently achieved by ED71 rather than by 1,25(OH)2D3, could be a reliable read-out in either developing or screening reagents targeting osteoporosis.


Assuntos
Calcitriol/análogos & derivados , Calcitriol/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Osteoclastos/metabolismo , Vitaminas/farmacologia , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Receptores de Calcitriol/genética , Vitamina D/análogos & derivados
13.
J Med Case Rep ; 8: 372, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25404056

RESUMO

INTRODUCTION: It has been well documented that labral tear is frequently associated with femoroacetabular impingement and dysplasia of the hip; however, there have been few reported cases of labral tear associated with idiopathic osteonecrosis of the hip. Here we report the case of a patient with labral tear associated with idiopathic osteonecrosis of the femoral head who was treated by hip arthroscopy, with a favorable short-term outcome. CASE PRESENTATION: Under the diagnosis of systemic lupus erythematosus, a 28-year-old Japanese woman was treated with the oral administration of steroid in 2007. A year after the treatment, she developed right hip joint pain and was diagnosed with idiopathic osteonecrosis of the femoral head at our institution. In November of 2011, she revisited our hospital when her right hip joint pain exacerbated and she became unable to walk. On the visit, the anterior impingement sign and Patrick test were positive. Radiography and magnetic resonance imaging in 2011 demonstrated neither spreading of the osteonecrosis area nor collapse of the femoral head in the right joint; however, magnetic resonance imaging showed a high-intensity area in the articular labrum in a T2-weighted image, leading to a diagnosis of labral tear. She underwent labral repair with hip arthroscopy in August of 2012. Now, 1 year after surgery, she does not feel any pain during walking and her modified Harris hip score has improved from 20 prior to surgery to 85. CONCLUSION: The case indicated that it is important to be aware of the possibility of labral tear in patients with idiopathic osteonecrosis of the femoral head, when spreading of the osteonecrosis area or collapse of the femoral head has not been seen on magnetic resonance imaging.


Assuntos
Acetábulo/lesões , Artroscopia/métodos , Necrose da Cabeça do Fêmur/complicações , Articulação do Quadril/cirurgia , Acetábulo/cirurgia , Adulto , Feminino , Necrose da Cabeça do Fêmur/diagnóstico por imagem , Necrose da Cabeça do Fêmur/etiologia , Necrose da Cabeça do Fêmur/patologia , Necrose da Cabeça do Fêmur/cirurgia , Humanos , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
14.
Proc Natl Acad Sci U S A ; 110(41): 16568-73, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24023068

RESUMO

In women, estrogen deficiency after menopause frequently accelerates osteoclastic bone resorption, leading to osteoporosis, the most common skeletal disorder. However, mechanisms underlying osteoporosis resulting from estrogen deficiency remain largely unknown. Here we show that in bone-resorbing osteoclasts, estrogen-dependent destabilization of hypoxia-inducible factor 1 alpha (HIF1α), which is unstable in the presence of oxygen, plays a pivotal role in promoting bone loss in estrogen-deficient conditions. In vitro, HIF1α was destabilized by estrogen treatment even in hypoxic conditions, and estrogen loss in ovariectomized (Ovx) mice stabilized HIF1α in osteoclasts and promoted their activation and subsequent bone loss in vivo. Osteoclast-specific HIF1α inactivation antagonized bone loss in Ovx mice and osteoclast-specific estrogen receptor alpha deficient mice, both models of estrogen-deficient osteoporosis. Oral administration of a HIF1α inhibitor protected Ovx mice from osteoclast activation and bone loss. Thus, HIF1α represents a promising therapeutic target in osteoporosis.


Assuntos
Estradiol/análogos & derivados , Estrogênios/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Osteoclastos/fisiologia , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/fisiopatologia , 2-Metoxiestradiol , Administração Oral , Animais , Células Cultivadas , Cruzamentos Genéticos , Ensaio de Imunoadsorção Enzimática , Estradiol/administração & dosagem , Estradiol/farmacologia , Feminino , Genótipo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Osteoclastos/efeitos dos fármacos , Osteoporose Pós-Menopausa/metabolismo , Reação em Cadeia da Polimerase
15.
J Biol Chem ; 287(39): 32479-84, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22865856

RESUMO

Macrophage lineage cells such as osteoclasts and foreign body giant cells (FBGCs) form multinuclear cells by cell-cell fusion of mononuclear cells. Recently, we reported that two seven-transmembrane molecules, osteoclast stimulatory transmembrane protein (OC-STAMP) and dendritic cell-specific transmembrane protein (DC-STAMP), were essential for osteoclast and FBGC cell-cell fusion in vivo and in vitro. However, signaling required to regulate FBGC fusion remained largely unknown. Here, we show that signal transducer and activator of transcription 1 (STAT1) deficiency in macrophages enhanced cell-cell fusion and elevated DC-STAMP expression in FBGCs. By contrast, lack of STAT6 increased STAT1 activation, significantly inhibiting cell-cell fusion and decreasing OC-STAMP and DC-STAMP expression in IL-4-induced FBGCs. Furthermore, either STAT1 loss or co-expression of OC-STAMP/DC-STAMP was sufficient to induce cell-cell fusion of FBGCs without IL-4. We conclude that the STAT6-STAT1 axis regulates OC-STAMP and DC-STAMP expression and governs fusogenic mechanisms in FBGCs.


Assuntos
Células Gigantes de Corpo Estranho/metabolismo , Proteínas de Membrana/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais/fisiologia , Animais , Fusão Celular , Regulação da Expressão Gênica/fisiologia , Células Gigantes de Corpo Estranho/citologia , Interleucina-4/genética , Interleucina-4/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT6/genética
16.
J Biol Chem ; 287(34): 28508-17, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22761448

RESUMO

Bone resorption, which is regulated by osteoclasts, is excessively activated in bone destructive diseases such as osteoporosis. Thus, controlling osteoclasts would be an effective strategy to prevent pathological bone loss. Although several transcription factors that regulate osteoclast differentiation and function could serve as molecular targets to inhibit osteoclast formation, those factors have not yet been characterized using a loss of function approach in adults. Here we report such a study showing that inactivation of B-lymphocyte induced maturation protein 1 (Blimp1) in adult mice increases bone mass by suppressing osteoclast formation. Using an ex vivo assay, we show that osteoclast differentiation is significantly inhibited by Blimp1 inactivation at an early stage of osteoclastogenesis. Conditional inactivation of Blimp1 inhibited osteoclast formation and increased bone mass in both male and female adult mice. Bone resorption parameters were significantly reduced by Blimp1 inactivation in vivo. Blimp1 reportedly regulates immune cell differentiation and function, but we detected no immune cell failure following Blimp1 inactivation. These data suggest that Blimp1 is a potential target to promote increased bone mass and prevent osteoclastogenesis.


Assuntos
Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Diferenciação Celular/fisiologia , Osteoclastos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Reabsorção Óssea/genética , Osso e Ossos/imunologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Tamanho do Órgão , Fator 1 de Ligação ao Domínio I Regulador Positivo , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
17.
Biochem Biophys Res Commun ; 421(4): 785-9, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22554514

RESUMO

Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure. Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor α (PDGFRα)-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGFß) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.


Assuntos
Osso e Ossos/citologia , Movimento Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-sis/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Becaplermina , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Osteoblastos/citologia , Osteoblastos/enzimologia
18.
J Bone Miner Res ; 27(9): 2015-23, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22508505

RESUMO

Osteoporosis is a complex disease with various causes, such as estrogen loss, genetics, and aging. Here we show that a dominant-negative form of aldehyde dehydrogenase 2 (ALDH2) protein, ALDH2*2, which is produced by a single nucleotide polymorphism (rs671), promotes osteoporosis due to impaired osteoblastogenesis. Aldh2 plays a role in alcohol-detoxification by acetaldehyde-detoxification; however, transgenic mice expressing Aldh2*2 (Aldh2*2 Tg) exhibited severe osteoporosis with increased levels of blood acetaldehyde without alcohol consumption, indicating that Aldh2 regulates physiological bone homeostasis. Wild-type osteoblast differentiation was severely inhibited by exogenous acetaldehyde, and osteoblastic markers such as osteocalcin, runx2, and osterix expression, or phosphorylation of Smad1,5,8 induced by bone morphogenetic protein 2 (BMP2) was strongly altered by acetaldehyde. Acetaldehyde treatment also inhibits proliferation and induces apoptosis in osteoblasts. The Aldh2*2 transgene or acetaldehyde treatment induced accumulation of the lipid-oxidant 4-hydroxy-2-nonenal (4HNE) and expression of peroxisome proliferator-activated receptor gamma (PPARγ), a transcription factor that promotes adipogenesis and inhibits osteoblastogenesis. Antioxidant treatment inhibited acetaldehyde-induced proliferation-loss, apoptosis, and PPARγ expression and restored osteoblastogenesis inhibited by acetaldehyde. Treatment with a PPARγ inhibitor also restored acetaldehyde-mediated osteoblastogenesis inhibition. These results provide new insight into regulation of osteoporosis in a subset of individuals with ALDH2*2 and in alcoholic patients and suggest a novel strategy to promote bone formation in such osteopenic diseases.


Assuntos
Acetaldeído/metabolismo , Aldeído Desidrogenase/genética , Mutação/genética , Osteoblastos/patologia , Osteogênese/genética , Osteoporose/genética , Acetaldeído/farmacologia , Adipogenia/efeitos dos fármacos , Aldeído-Desidrogenase Mitocondrial , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoporose/enzimologia , Osteoporose/patologia , Fenótipo , Estresse Fisiológico/efeitos dos fármacos
19.
J Bone Miner Res ; 27(6): 1289-97, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22337159

RESUMO

Cell­cell fusion is a dynamic phenomenon promoting cytoskeletal reorganization and phenotypic changes. To characterize factors essential for fusion of macrophage lineage cells, we identified the multitransmembrane protein, osteoclast stimulatory transmembrane protein (OC-STAMP), and analyzed its function. OC-STAMP­deficient mice exhibited a complete lack of cell­cell fusion of osteoclasts and foreign body giant cells (FBGCs), both of which are macrophage-lineage multinuclear cells, although expression of dendritic cell specific transmembrane protein (DC-STAMP), which is also essential for osteoclast/FBGC fusion, was normal. Crossing OC-STAMP­overexpressing transgenic mice with OC-STAMP­deficient mice restored inhibited osteoclast and FBGC cell­cell fusion seen in OC-STAMP­deficient mice. Thus, fusogenic mechanisms in macrophage-lineage cells are regulated via OC-STAMP and DC-STAMP.


Assuntos
Células Gigantes de Corpo Estranho/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Osteoclastos/metabolismo , Animais , Fusão Celular , Cruzamentos Genéticos , Feminino , Células Gigantes de Corpo Estranho/citologia , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Transgênicos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteoclastos/ultraestrutura , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA