Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003546

RESUMO

In Arabidopsis thaliana (Arabidopsis), nonhost resistance (NHR) is influenced by both leaf age and the moment of inoculation. While the circadian clock and photoperiod have been linked to the time-dependent regulation of NHR in Arabidopsis, the mechanism underlying leaf age-dependent NHR remains unclear. In this study, we investigated leaf age-dependent NHR to Pyricularia oryzae in Arabidopsis. Our findings revealed that this NHR type is regulated by both miR156-dependent and miR156-independent pathways. To identify the key players, we utilized rice-FOX Arabidopsis lines and identified the rice HD-Zip I OsHOX6 gene. Notably, OsHOX6 expression confers robust NHR to P. oryzae and Colletotrichum nymphaeae in Arabidopsis, with its effect being contingent upon leaf age. Moreover, we explored the role of AtHB7 and AtHB12, the Arabidopsis closest homologues of OsHOX6, by studying mutants and overexpressors in Arabidopsis-C. higginsianum interaction. AtHB7 and AtHB12 were found to contribute to both penetration resistance and post-penetration resistance to C. higginsianum in a leaf age- and time-dependent manner. These findings highlight the involvement of HD-Zip I AtHB7 and AtHB12, well-known regulators of development and abiotic stress responses, in biotic stress responses in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Zíper de Leucina , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
2.
Nat Commun ; 13(1): 5097, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042318

RESUMO

Cyanophycin is a natural biopolymer consisting of equimolar amounts of aspartate and arginine as the backbone and branched sidechain, respectively. It is produced by a single enzyme, cyanophycin synthetase (CphA1), and accumulates as a nitrogen reservoir during N2 fixation by most cyanobacteria. A recent structural study showed that three constituent domains of CphA1 function as two distinct catalytic sites and an oligomerization interface in cyanophycin synthesis. However, it remains unclear how the ATP-dependent addition of aspartate to cyanophycin is initiated at the catalytic site of the glutathione synthetase-like domain. Here, we report the cryogenic electron microscopy structures of CphA1, including a complex with aspartate, cyanophycin primer peptide, and ATP analog. These structures reveal the aspartate binding mode and phosphate-binding loop movement to the active site required for the reaction. Furthermore, structural and mutational data show a potential role of protein dynamics in the catalytic efficiency of the arginine condensation reaction.


Assuntos
Ácido Aspártico , Cianobactérias , Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , Ácido Aspártico/metabolismo , Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Peptídeo Sintases/metabolismo , Proteínas de Plantas/metabolismo , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA