Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(33): 17835-17842, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39105726

RESUMO

We investigated the motion of spherical polystyrene/polypyrrole-coated polystyrene Janus particles placed at an air/saline interface and driven by a permanent magnetic field of ca. 0.5 T. For the sake of comparison, the motion of pure floating polystyrene particles was studied. Both kinds of the studied particles moved toward the magnet and stopped at the boundary of the near-surface well produced by the magnetic field. The Moses effect-driven motion of floating Janus particles was analyzed and investigated under different strengths of the magnetic field and salt concentrations. The study of the Janus particle displacement led to the development of a unified theoretical framework explaining the mechanism of the motion. This framework predicts that the motion of particles placed at an air-salt solution interface is not only dictated by magnetic energy but also intricately influenced by the interplay of factors, including the curvature of the interface caused by the static magnetic field, gravitational potential, and capillary forces. The orientation of the particles was observed. A qualitative explanation of the observed phenomena is suggested. The investigated process has potential for the self-assembly of particles placed at the liquid/air interface.

2.
Macromol Rapid Commun ; : e2400532, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090528

RESUMO

A dual zwitterionic diblock copolymer (M100C100) consisting of poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC, M) and poly(3-((2-(methacryloyloxy)ethyl) dimethylammonio) propionate) (PCBMA, C) is synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. A double hydrophilic diblock copolymer (M100S100) consist of PMPC and anionic poly(3-sulfopropyl methacrylate potassium salt) (PMPS, S) is synthesized via RAFT. The degrees of polymerization of each block are 100. The charges of PMPC are neutralized intramolecularly. At neutral pH, the charges in PCBMA are also neutralized intramolecularly due to its carboxybetaine structure. Under acidic conditions, PCBMA exhibits polycation behavior as the pendant carboxy groups become protonated, forming cationic tertiary amine groups. PMPS shows permanent anionic nature independent of pH. Charge neutralized mixture of cationic M100C100 and anionic M100S100 in acidic aqueous solution forms water-soluble polyion complex (PIC) micelle owing to electrostatic attractive interactions. The core is composed of the cationic PCBMA and anionic PMPS blocks, with the PMPC blocks serving as shells that covered the core surface, forming spherical core-shell PIC micelles. Above pH 4 the pendant carboxy groups in PCBMA undergo deprotonation, transitioning to a zwitterionic state, thereby eliminating the cationic charge in PCBMA. Therefore, above pH 4 the PIC micelles are dissociated due to the disappearance of the charge interactions.

3.
Chem Commun (Camb) ; 60(69): 9163-9176, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39051149

RESUMO

Responsiveness to stimuli is important in daily life: natural biological activity is governed by continuous stimulus responsiveness. The design of stimuli-responsive materials is required for the development of advanced sensing systems. Although fully controlled stimuli-responsive systems have been constructed in nature, artificial systems remain a challenge. Conventional stimuli-responsive materials show direct responsiveness to an applied stimulus (Stimulus 1), with structural changes in their molecules and organized states. This feature article focuses on cascading responses as a new concept for integrating stimuli-responsive material design. In cascading responses, an original stimulus (Stimulus 1) is converted into other stimuli (Stimulus 2, 3, …, N) through successive conversions. Stimulus N provides the eventual output response. Integration of multiple stimuli-responsive materials is required to achieve cascading responses. Although cascade, domino, and tandem chemical reactions have been reported at the molecular level, they are not used for materials with higher organized structures. In this article, we introduce functional carriers and sensors based on cascading responses as model cases. The concept of cascading responses enables the achievement of transscale responsivity and sensitivity, which are not directly induced by the original stimulus or its responsive material, for the development of advanced dynamic functional materials.

4.
Macromol Rapid Commun ; : e2400438, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980977

RESUMO

Liquid marbles (LMs) with a cubic shape are created by using various vinyl monomers as an inner liquid and polymer plates with mm size as a stabilizer. The relationship between the surface tension of the vinyl monomers and formability of the LMs is investigated. LMs can be fabricated using vinyl monomers with surface tensions of 42.7-40.3 mN m-1. The cubic polymer particles are successively synthesized via free-radical polymerizations by irradiation of the cubic LMs with UV light in a solvent-free manner. In addition, controlling the number of polymer plates per one LM, the shape of the plate or the coalescence of the LMs can lead to production of polymer particles with desired forms (e.g., Platonic and rectangular solids) that correspond to the shapes of the original LMs.

5.
Adv Sci (Weinh) ; 11(32): e2404728, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924310

RESUMO

Gas marbles are a new family of particle-stabilized soft dispersed system with a soap bubble-like air-in-water-in-air structure. Herein, stimulus-responsive character is successfully introduced to a gas marble system for the first time using polymer particles carrying a poly(tertiary amine methacrylate) (pKa ≈7) steric stabilizer on their surfaces as a particulate stabilizer. The gas marbles exhibited long-term stability when transferred onto the planar surface of liquid water, provided that the solution pH of the subphase is basic and neutral. In contrast, the use of acidic solutions led to immediate disintegration of the gas marbles, resulting in release of the inner gas. The critical minimum solution pH required for long-term gas marble stability correlates closely with the known pKa value for the poly(tertiary amine methacrylate) stabilizer. It also demonstrates amphibious motions of the gas marbles.

6.
Small ; : e2402297, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837678

RESUMO

Hydrophobic polymer plates with smooth and rough surfaces are used as a stabilizer for cubic liquid marbles (LMs) to study the effect of surface roughness on their formation. The smooth and rough polymer plates can stabilize LMs using liquids with surface tensions of 72.8-26.6 and 72.8-22.9 mN m-1, respectively. It is clarified that the higher the surface roughness, the lower the surface tension of the liquids are stabilized to form the LMs. These results indicated that the introduction of surface roughness improves the hydrophobicity of the polymer plates and the rough polymer plates can stabilize LMs using liquids with a wider surface tension range. Electron microscopy studies and numerical analyses confirmed that the LMs can be formed, when the Cassie-Baxter wetting state, where θY>90° (θY: the contact angle on smooth surfaces) and θR>90° (θR: the contact angle on rough surfaces), and the metastable Cassie-Baxter wetting state, where θY<90° and θR>90°, are realized. Finally, the synthesis of cubic polymer particles are succeeded by free radical polymerization of the cubic LMs containing a hydrophobic vinyl monomer (dodecyl acrylate) in a solvent-free manner.

7.
Langmuir ; 40(22): 11757-11765, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38769613

RESUMO

Liquid marbles (LMs) can be prepared by adsorption of hydrophobic particles at the air-liquid interface of a water droplet. LMs have been studied for their application as microreaction vessels. However, their opaqueness poses challenges for internal observation. Liquid plasticines (LPs), akin to LMs, can be prepared by the adsorption of hydrophobic particles with a diameter of 50 nm or less, at the air-liquid interface of a water droplet. Unlike LMs, LPs are transparent, allowing for internal observation, thus presenting promising applications as reactors and culture vessels on a microliter scale. In this study, the surface of silica particles, approximately 20 nm in diameter, was rendered hydrophobic to prepare hydrophobic silica particles (SD0). A small amount of poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) was then grafted onto the surface of SD0, yielding SD1. SD0 particles exhibited consistent hydrophobicity irrespective of the environmental pH atmosphere. Under acidic conditions, SD1 became hydrophilic due to the protonation of pendant tertiary amines in the grafted PDPA chains. However, SD1 alone was unsuitable for LP preparation due to its high surface wettability regardless of atmospheric pH, attributable to the presence of PDPA-grafted chains. Therefore, to prepare pH-responsive LP, SD1 and SD0 were mixed (SD1/SD0 = 3/7). Upon exposure to HCl gas, these LPs ruptured, with the leaked water from the LPs being absorbed by adjacent paper. Moreover, clear LPs, prepared using an aqueous solution containing a water-soluble photoacid generator (PAG), disintegrated upon exposure to light as PAG generated acid, leading to LP breakdown. In summary, pH-responsive LPs, capable of disintegration under acidic conditions and upon light irradiation, were successfully prepared in this study.

8.
ACS Macro Lett ; 13(5): 537-541, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38629809

RESUMO

We report the preparation of chiral silica using a linear polysiloxane main chain with a preferred-handed helical structure as the template. Poly(methylvinyl siloxane) (PMVS) with a cysteine derivative side chain designated as PMVS-Cys was prepared using anionic polymerization and an ene-thiol reaction. PMVS-Cys forms a helical conformation in both solution and film via hydrogen bonding between amide groups at side chains. The helical structure remains during the calcination process, resulting in silica with helical structure. The silica with a helical structure shows optical activity.

9.
Small ; 20(24): e2400938, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488737

RESUMO

Mechanoresponsive materials have been studied to visualize and measure stresses in various fields. However, the high-sensitive and spatiotemporal imaging remain a challenging issue. In particular, the time evolutional responsiveness is not easily integrated in mechanoresponsive materials. In the present study, high-sensitive spatiotemporal imaging of weak compression stresses is achieved by time-evolutional controlled diffusion processes using conjugated polymer, capsule, and sponge. Stimuli-responsive polydiacetylene (PDA) is coated inside a sponge. A mechanoresponsive capsule is set on the top face of the sponge. When compression stresses in the range of 6.67-533 kPa are applied to the device, the blue color of PDA is changed to red by the diffusion of the interior liquid containing a guest polymer flowed out of the disrupted capsule. The applied strength (F/N), time (t/s), and impulse (F·t/N s) are visualized and quantified by the red-color intensity. When a guest metal ion is intercalated in the layered structure of PDA to tune the responsivity, the device visualizes the elapsed time (τ/min) after unloading the stresses. PDA, capsule, and sponge play the important roles to achieve the time evolutional responsiveness for the high-sensitive spatiotemporal distribution imaging through the controlled diffusion processes.

10.
Langmuir ; 40(12): 6272-6284, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483293

RESUMO

Cotton-core/polypyrrole (PPy)-sheath fibers (cotton/PPy fibers) were synthesized by aqueous chemical oxidative seeded polymerization and were utilized as precursors for nitrogen-containing carbon (NCC) tubes. Irradiation of the cotton/PPy fibers with a near-infrared (NIR) laser heated them to approximately 300 °C due to light-to-heat photothermal conversion by the PPy, and the cotton core was thermally decomposed and vaporized. Scanning electron microscopy studies revealed the formation of tubes with monodispersed diameters, and elemental microanalysis, Fourier transform infrared spectroscopy, and Raman spectroscopy confirmed that the PPy sheath was converted into NCC. Furthermore, sunlight also worked as the light source in fabricating the NCC tubes. The thicknesses of the tubes were controlled between 410 nm and 2.30 µm by tuning the PPy sheath thickness. The method developed in this study can be extended to other polymeric fibers, including acrylic and wool fibers. The shapes of the cross sections and surface nanomorphologies of the NCC tubes can be reflected in those of the polymer/PPy fibers.

11.
JACS Au ; 3(10): 2698-2702, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37885578

RESUMO

Circularly polarized luminescence (CPL) is typically achieved with a chiral luminophore. However, using a helical nanosized fused quartz cell consisting of chiral silica, we could control the wavelength and helical sense of the CPL of an achiral luminophore. Chiral silica with a helical nanostructure was prepared by calcining a mixture of polyhedral oligomeric silsesquioxane (POSS)-functionalized isotactic poly(methacrylate) (it-PMAPOSS) and a small amount of chiral dopant. The chiral silica encapsulated functional molecules, including luminophores, along the helical nanocavity, leading to induced circular dichroism (ICD) and induced circularly polarized luminescence (iCPL). Because chiral silica can act as a helical nanosized fused quartz cell, it can encapsulate not only the luminophore but also solvent molecules. By changing the solvent in the luminophore-containing nanosized fused quartz cell, the wavelength of the CPL was controlled. This method provides an effective strategy for designing novel CPL-active materials.

12.
Langmuir ; 39(42): 14984-14995, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37831595

RESUMO

Surfactant-free polypyrrole (PPy) nanoparticles, which were colloidally stable in aqueous medium, were successfully synthesized by coupling polymerization of pyrrole using Fe(NO3)3 solids in the absence of any colloidal stabilizer. The pyrrole monomers were gradually supplied from the vapor phase, and the coupling reaction of the monomers could proceed to generate PPy in a water medium. The resulting PPy nanoparticles were extensively characterized in terms of diameter, bulk chemical composition, surface chemistry, and colloidal stability by dynamic light scattering, electron microscopy, elemental microanalysis, Fourier transform infrared spectroscopy, Raman spectroscopy, electrophoresis, and X-ray photoelectron spectroscopy. The characterization results indicated that the PPy nanoparticles can be colloidally stable based on the electrostatic stabilization mechanism due to cationic charges generated on the PPy molecules by doping during the polymerization. General chemical oxidative polymerization in aqueous medium using the Fe(NO3)3 oxidant without a colloidal stabilizer as a control experiment resulted in generation of atypical PPy aggregates with over a micrometer size, indicating that the polymerization at low ionic strength is essential for colloidal particle formation. Finally, it was demonstrated that the PPy nanoparticles worked as a surfactant-free black-colored particulate emulsifier by adsorption at the oil-water interface to stabilize Pickering-type oil-in-water emulsions.

13.
Nat Commun ; 14(1): 6723, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872193

RESUMO

Stimuli-responsive emulsions offer a dual advantage, combining long-term storage with controlled release triggered by external cues such as pH or temperature changes. This study establishes that thermo-responsive emulsion behaviour is primarily determined by interactions between, rather than within, interfaces. Consequently, the stability of these emulsions is intricately tied to the nature of the stabilizing microgel particles - whether they are more polymeric or colloidal, and the morphology they assume at the liquid interface. The colloidal properties of the microgels provide the foundation for the long-term stability of Pickering emulsions. However, limited deformability can lead to non-responsive emulsions. Conversely, the polymeric properties of the microgels enable them to spread and flatten at the liquid interface, enabling stimuli-responsive behaviour. Furthermore, microgels shared between two emulsion droplets in flocculated emulsions facilitate stimuli-responsiveness, regardless of their internal architecture. This underscores the pivotal role of microgel morphology and the forces they exert on liquid interfaces in the control and design of stimuli-responsive emulsions and interfaces.

14.
ACS Appl Mater Interfaces ; 15(32): 38986-38995, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530444

RESUMO

The surface-templated evaporation-driven (S-TED) method that uses liquid-repellent surfaces has attracted considerable attention for its use in fabricating supraparticles of defined shape, size, and porosity. However, challenges in achieving mass production have impeded the widespread adoption of the S-TED method. To overcome this limit, we introduce an evaporation-driven "multiple supraparticle" synthesis by drying arrays of self-lubricating colloidal dispersion microdrops. To facilitate this synthetic method, a hydrophilic micropattern is prepared on a hydrophobic substrate as a template. During the removal of the substrate out of a dispersion, liquid drops are trapped and generate a microdrop array. To produce supraparticles, the contact lines of the trapped drops must be able to recede freely during evaporation. However, hydrophilic micropatterns induce strong contact line pinning for microdrops that hinders supraparticle formation. Herein, we solve this contradiction by employing an Ouzo-like colloidal dispersion, where we can control the wettability of the drop trapping domain. The self-lubrication effect provided by the Ouzo-like solution enables smooth movement of the drops' contact lines during evaporation, thereby resulting in the successful fabrication of supraparticle arrays even within the trapping domain. This strategy offers a promising and scalable approach for large-scale evaporation-driven supraparticle synthesis with a potential for extension to various primary colloidal particles, further broadening its applicability.

15.
Langmuir ; 39(28): 9617-9626, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37392450

RESUMO

Electrostatic transfer and adsorption of electrically conductive polymer-coated poly(ethylene terephthalate) plates from a particle bed to a water droplet were studied, with the influence of plate thickness and shape observed. After synthesis and confirmation of the particles' properties using stereo and scanning electron microscopies, elemental microanalysis, and water contact angle measurement, the electric field strength and droplet-bed separation distance required for transfer were measured. An electrometer and high-speed video footage were used to measure the charge transferred by each particle, and its orientation and adsorption behavior during transfer and at the droplet interface. The use of plates of consistent square cross section allowed the impact of contact-area-dependent particle cohesion and gravity on the electrostatic transfer of particles to be decoupled for the first time. The electrostatic force required to extract a plate was directly proportional to the plate mass (thickness), a trend very different from that previously observed for spherical particles of varied diameter (mass). This reflected the different relationship between mass, surface area, and cohesive forces for spherical and plate-shaped particles of different sizes. Thicker plates transferred more charge to the droplet, probably due to their remaining at the bed at higher field strengths. The impact of plate cross-sectional geometry was also assessed. Differences in the ease of transfer of square, hexagonal, and circular plates seemed to depend only on their mass, while other aspects of their comparative behavior are attributed to the more concentrated charge distribution present on particles with sharper vertices.

16.
J Colloid Interface Sci ; 649: 581-590, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37364458

RESUMO

HYPOTHESIS: Gallium-based room-temperature liquid metals (LMs) have unique physicochemical properties; however, their high surface tension, low flowability, and high corrosiveness to other materials limit their advanced processing (including precise shaping) and application. Consequently, LM-rich free-flowing powders, named "dry LMs" that offer the inherent advantages of dry powders, should play a critical role in expanding the application scope of LMs. EXPERIMENTS: A general method of preparing silica-nanoparticle-stabilized LMs in the form of LM-rich powders (>95 wt% LM) is developed. FINDINGS: Dry LMs can be simply prepared by mixing LMs with silica nanoparticles in a planetary centrifugal mixer in the absence of solvents. As a sustainable dry-process route alternative to wet-process routes, this ecofriendly and simple method of dry LM fabrication has several advantages, e.g., high throughput, scalability, and low toxicity owing to the lack of organic dispersion agents and milling media. Moreover, the unique photothermal properties of dry LMs are used for photothermal electric power generation. Thus, dry LMs not only pave the way for the use of LMs in powder form but also provide a new opportunity for expanding their application scope in energy conversion systems.

17.
Mater Horiz ; 10(6): 2237-2244, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37006126

RESUMO

Imaging and measurement of friction forces are required in a variety of fields. If the friction forces originating from the motions of professionals are quantitatively analyzed, the data can be applied to a motion-copying system by a robot. However, weak friction forces have not been visualized and quantified using conventional sensing materials and devices because of their low sensitivity. Here we present a highly sensitive friction-imaging device based on the cascading responses of stimuli-responsive materials, namely polydiacetylene (PDA) and dry liquid (DL). Weak friction forces disrupt the DL, which is composed of liquid droplets surrounded by solid particles. The outflowing liquid under chemical stress changes the color of PDA. The cascading responses enable colorimetric imaging and measurement of weak friction forces in the range of 0.006-0.080 N. Furthermore, the device visualizes the force distribution of handwriting in calligraphy depending on the individual characteristics of an expert, a practician, and a beginner. A high-sensitivity friction-imaging device can be used to understand various motions.

18.
Langmuir ; 39(16): 5872-5879, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37039828

RESUMO

Cubic liquid marbles (LMs) were fabricated by using various epoxy monomers as internal liquids and millimeter-sized polymer plates as stabilizers. Successively, cubic polymer particles were synthesized via solvent-free polyaddition reactions by exposing the cubic LMs to NH3 vapor used as a curing agent. The effect of the solubility parameters (SPs) for the epoxy monomers on the formation of the cubic polymer particles was investigated. As a result, we succeeded in fabricating cubic polymer particles reflecting the shapes of the original LMs by using epoxy monomers with SP values of 23.70-21.66 (MPa)1/2. Furthermore, the shapes of the LMs could be controlled on demand (e.g., pentahedral and rectangular) by control of the number of polymer plates per LM and/or coalescence of the LMs, resulting in fabrication of polymer particles with shapes reflecting those of the LMs.

19.
Angew Chem Int Ed Engl ; 62(19): e202300031, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36895104

RESUMO

Biominerals can exhibit exceptional mechanical properties owing to their hierarchically-ordered organic/inorganic nanocomposite structure. However, synthetic routes to oriented artificial biominerals of comparable complexity remain a formidable technical challenge. Herein we design a series of soft, deformable nanogels that are employed as particulate additives to prepare nanogel@calcite nanocomposite crystals. Remarkably, such nanogels undergo a significant morphological change-from spherical to pseudo-hemispherical-depending on their degree of cross-linking. This deformation occurs normal to the growth direction of the (104) face of the calcite and the underlying occlusion mechanism is revealed by in situ atomic force microscopy studies. This model system provides new mechanistic insights regarding the formation of oriented structures during biomineralization and offers new avenues for the design of synthetic nanocomposites comprising aligned anisotropic nanoparticles.

20.
Langmuir ; 39(10): 3800-3809, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36853615

RESUMO

(Sub)millimeter-sized hexagonal polymer plates that were monodisperse in shape and size were utilized as stabilizers for aqueous bubbles, and the effects of the hydrophilic-hydrophobic property, size, and solid concentration of the plates on the formability, stability, and shape and structure of aqueous bubbles were investigated. The formability and stability of the bubbles were improved by increasing the hydrophobicity of the plate surface, decreasing the plate size, and increasing the solid concentration of the plates. For plates with suitable water wettability, three-dimensional bubbles with nearly spherical and polyhedral shapes were formed by the adsorption of plates to the bare air bubbles introduced into the continuous water phase by air-water mixing. On the contrary, two-dimensional bubbles with accordion-type structures consisting of alternating layers of plates and entrapped air bubbles were formed by the transfer of multiple plates with poor wettability from the air phase to the water phase by air-water mixing. Furthermore, a correlation was found between the bubble/stabilizer size ratio and bubble shape for plates with the suitable wettability: bubbles with nearly spherical shapes were formed when the bubble/plate size ratios were >2, bubbles with hexahedral, pentahedral, and tetrahedral shapes were formed when the size ratios were approximately 1, and bubbles with triangular and sandwich shapes were formed when the size ratios were <0.8. Additionally, bubbles with similar shapes were formed when the bubble/plate size ratios were close, even when the sizes of the plates and bubbles were different.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA