Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
2.
Nature ; 627(8004): 656-663, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418883

RESUMO

Understanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies1. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers. KRAS mutant cancer cells showed distinct transcriptional features, reduced differentiation and low levels of aneuploidy. Non-malignant areas surrounding human LUAD samples were enriched with alveolar intermediate cells that displayed elevated KRT8 expression (termed KRT8+ alveolar intermediate cells (KACs) here), reduced differentiation, increased plasticity and driver KRAS mutations. Expression profiles of KACs were enriched in lung precancer cells and in LUAD cells and signified poor survival. In mice exposed to tobacco carcinogen, KACs emerged before lung tumours and persisted for months after cessation of carcinogen exposure. Moreover, they acquired Kras mutations and conveyed sensitivity to targeted KRAS inhibition in KAC-enriched organoids derived from alveolar type 2 (AT2) cells. Last, lineage-labelling of AT2 cells or KRT8+ cells following carcinogen exposure showed that KACs are possible intermediates in AT2-to-tumour cell transformation. This study provides new insights into epithelial cell states at the root of LUAD development, and such states could harbour potential targets for prevention or intervention.


Assuntos
Adenocarcinoma de Pulmão , Diferenciação Celular , Células Epiteliais , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Aneuploidia , Carcinógenos/toxicidade , Células Epiteliais/classificação , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Organoides/efeitos dos fármacos , Organoides/metabolismo , Lesões Pré-Cancerosas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Taxa de Sobrevida , Produtos do Tabaco/efeitos adversos , Produtos do Tabaco/toxicidade
3.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397007

RESUMO

Early-stage lung adenocarcinoma (LUAD) patients remain at substantial risk for recurrence and disease-related death, highlighting the unmet need of biomarkers for the assessment and identification of those in an early stage who would likely benefit from adjuvant chemotherapy. To identify circulating miRNAs useful for predicting recurrence in early-stage LUAD, we performed miRNA microarray analysis with pools of pretreatment plasma samples from patients with stage I LUAD who developed recurrence or remained recurrence-free during the follow-up period. Subsequent validation in 85 patients with stage I LUAD resulted in the development of a circulating miRNA panel comprising miR-23a-3p, miR-320c, and miR-125b-5p and yielding an area under the curve (AUC) of 0.776 in predicting recurrence. Furthermore, the three-miRNA panel yielded an AUC of 0.804, with a sensitivity of 45.8% at 95% specificity in the independent test set of 57 stage I and II LUAD patients. The miRNA panel score was a significant and independent factor for predicting disease-free survival (p < 0.001, hazard ratio [HR] = 1.64, 95% confidence interval [CI] = 1.51-4.22) and overall survival (p = 0.001, HR = 1.51, 95% CI = 1.17-1.94). This circulating miRNA panel is a useful noninvasive tool to stratify early-stage LUAD patients and determine an appropriate treatment plan with maximal efficacy.


Assuntos
Adenocarcinoma de Pulmão , MicroRNA Circulante , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNA Circulante/genética , Biomarcadores Tumorais/genética , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética
4.
Mod Pathol ; 37(2): 100398, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043788

RESUMO

Immunohistochemistry (IHC) is a well-established and commonly used staining method for clinical diagnosis and biomedical research. In most IHC images, the target protein is conjugated with a specific antibody and stained using diaminobenzidine (DAB), resulting in a brown coloration, whereas hematoxylin serves as a blue counterstain for cell nuclei. The protein expression level is quantified through the H-score, calculated from DAB staining intensity within the target cell region. Traditionally, this process requires evaluation by 2 expert pathologists, which is both time consuming and subjective. To enhance the efficiency and accuracy of this process, we have developed an automatic algorithm for quantifying the H-score of IHC images. To characterize protein expression in specific cell regions, a deep learning model for region recognition was trained based on hematoxylin staining only, achieving pixel accuracy for each class ranging from 0.92 to 0.99. Within the desired area, the algorithm categorizes DAB intensity of each pixel as negative, weak, moderate, or strong staining and calculates the final H-score based on the percentage of each intensity category. Overall, this algorithm takes an IHC image as input and directly outputs the H-score within a few seconds, significantly enhancing the speed of IHC image analysis. This automated tool provides H-score quantification with precision and consistency comparable to experienced pathologists but at a significantly reduced cost during IHC diagnostic workups. It holds significant potential to advance biomedical research reliant on IHC staining for protein expression quantification.


Assuntos
Aprendizado Profundo , Humanos , Imuno-Histoquímica , Hematoxilina/metabolismo , Algoritmos , Núcleo Celular/metabolismo
5.
J Thorac Oncol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38070597

RESUMO

INTRODUCTION: Pathologic response (PathR) by histopathologic assessment of resected specimens may be an early clinical end point associated with long-term outcomes with neoadjuvant therapy. Digital pathology may improve the efficiency and precision of PathR assessment. LCMC3 (NCT02927301) evaluated neoadjuvant atezolizumab in patients with resectable NSCLC and reported a 20% major PathR rate. METHODS: We determined PathR in primary tumor resection specimens using guidelines-based visual techniques and developed a convolutional neural network model using the same criteria to digitally measure the percent viable tumor on whole-slide images. Concordance was evaluated between visual determination of percent viable tumor (n = 151) performed by one of the 47 local pathologists and three central pathologists. RESULTS: For concordance among visual determination of percent viable tumor, the interclass correlation coefficient was 0.87 (95% confidence interval [CI]: 0.84-0.90). Agreement for visually assessed 10% or less viable tumor (major PathR [MPR]) in the primary tumor was 92.1% (Fleiss kappa = 0.83). Digitally assessed percent viable tumor (n = 136) correlated with visual assessment (Pearson r = 0.73; digital/visual slope = 0.28). Digitally assessed MPR predicted visually assessed MPR with outstanding discrimination (area under receiver operating characteristic curve, 0.98) and was associated with longer disease-free survival (hazard ratio [HR] = 0.30; 95% CI: 0.09-0.97, p = 0.033) and overall survival (HR = 0.14, 95% CI: 0.02-1.06, p = 0.027) versus no MPR. Digitally assessed PathR strongly correlated with visual measurements. CONCLUSIONS: Artificial intelligence-powered digital pathology exhibits promise in assisting pathologic assessments in neoadjuvant NSCLC clinical trials. The development of artificial intelligence-powered approaches in clinical settings may aid pathologists in clinical operations, including routine PathR assessments, and subsequently support improved patient care and long-term outcomes.

6.
JAMA Netw Open ; 6(12): e2347700, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100106

RESUMO

Importance: Biomarker testing for driver mutations is essential for selecting appropriate non-small cell lung cancer (NSCLC) treatment but is insufficient. Objective: To investigate the status of biomarker testing and drug therapy for NSCLC in Japan for identifying problems in treatment. Design, Setting, and Participants: The REVEAL cohort study included retrospective data collection and prospective follow-up from 29 institutions across Japan. Of 1500 patients diagnosed with advanced or recurrent NSCLC between January 1 and March 18, 2021, 1479 were eligible. Cases recognized at the wrong clinical stage (n = 12), diagnosed outside the study period (n = 6), not treated according to eligibility criteria before recurrence (n = 2), and with deficient consent acquisition procedure (n = 1) were excluded. Main Outcomes and Measures: The primary end point was the biomarker testing status. Treatment-related factors were examined. Results: Among the 1479 patients included in the analysis, the median age was 72 (range, 30-95) years; 1013 (68.5%) were men; 1161 (78.5%) had an Eastern Cooperative Oncology Group performance status 0 or 1; 1097 (74.2%) were current or past smokers; and 947 (64.0%) had adenocarcinoma. Biomarker status was confirmed in 1273 patients (86.1%). Multigene testing was performed in 705 cases (47.7%); single-gene testing, in 847 (57.3%); and both, in 279 (18.9%). Biomarker testing was performed for EGFR in 1245 cases (84.2%); ALK, in 1165 (78.8%); ROS1, in 1077 (72.8%); BRAF, in 803 (54.3%); and MET, in 805 (54.4%). Positivity rates among 898 adenocarcinoma cases included 305 (34.0%) for EGFR, 29 (3.2%) for ALK, 19 (2.1%) for ROS1, 11 (1.2%) for BRAF, and 14 (1.6%) for MET. Positivity rates among 375 nonadenocarcinoma cases were 14 (3.7%) for EGFR, 6 (1.6%) for ALK, 1 (0.3%) for ROS1, 3 (0.8%) for BRAF, and 8 (2.1%) for MET. Poor physical status, squamous cell carcinoma, and other comorbidities were associated with hampered multigene testing. Targeted therapy was received as first-line treatment by 263 of 278 cases (94.6%) positive for EGFR, 25 of 32 (78.1%) positive for ALK, 15 of 24 (62.5%) positive for ROS1, 9 of 12 (75.0%) positive for BRAF, and 12 of 19 (63.2%) positive for MET. Median overall survival of patients with positive findings for driver gene alteration and who received targeted therapy was 24.3 (95% CI, not reported) months; with positive findings for driver gene alteration and who did not receive targeted therapy, 15.2 (95% CI, 7.7 to not reported) months; and with negative findings for driver gene alteration, 11.0 (95% CI, 10.0-12.5) months. Multigene testing for nonadenocarcinomas and adenocarcinomas accounted for 705 (47.7%) of all NSCLC cases. Conclusions and Relevance: These findings suggest that multigene testing has not been sufficiently implemented in Japan and should be considered prospectively, even in nonadenocarcinomas, to avoid missing rare driver gene alterations.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Masculino , Humanos , Idoso , Feminino , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos de Coortes , Estudos Prospectivos , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas B-raf , Estudos Retrospectivos , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas/genética , Biomarcadores , Receptores ErbB , Receptores Proteína Tirosina Quinases
7.
Mod Pathol ; 36(12): 100326, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678674

RESUMO

Recent statistics on lung cancer, including the steady decline of advanced diseases and the dramatically increasing detection of early-stage diseases and indeterminate pulmonary nodules, mark the significance of a comprehensive understanding of early lung carcinogenesis. Lung adenocarcinoma (ADC) is the most common histologic subtype of lung cancer, and atypical adenomatous hyperplasia is the only recognized preneoplasia to ADC, which may progress to adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) and eventually to invasive ADC. Although molecular evolution during early lung carcinogenesis has been explored in recent years, the progress has been significantly hindered, largely due to insufficient materials from ADC precursors. Here, we employed state-of-the-art deep learning and artificial intelligence techniques to robustly segment and recognize cells on routinely used hematoxylin and eosin histopathology images and extracted 9 biology-relevant pathomic features to decode lung preneoplasia evolution. We analyzed 3 distinct cohorts (Japan, China, and United States) covering 98 patients, 162 slides, and 669 regions of interest, including 143 normal, 129 atypical adenomatous hyperplasia, 94 AIS, 98 MIA, and 205 ADC. Extracted pathomic features revealed progressive increase of atypical epithelial cells and progressive decrease of lymphocytic cells from normal to AAH, AIS, MIA, and ADC, consistent with the results from tissue-consuming and expensive molecular/immune profiling. Furthermore, pathomics analysis manifested progressively increasing cellular intratumor heterogeneity along with the evolution from normal lung to invasive ADC. These findings demonstrated the feasibility and substantial potential of pathomics in studying lung cancer carcinogenesis directly from the low-cost routine hematoxylin and eosin staining.


Assuntos
Adenocarcinoma in Situ , Adenocarcinoma , Neoplasias Pulmonares , Lesões Pré-Cancerosas , Humanos , Hiperplasia/patologia , Inteligência Artificial , Amarelo de Eosina-(YS) , Hematoxilina , Adenocarcinoma/genética , Adenocarcinoma/patologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma in Situ/genética , Adenocarcinoma in Situ/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Evolução Molecular , Carcinogênese/patologia
8.
Comput Methods Programs Biomed ; 241: 107768, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619429

RESUMO

BACKGROUND AND OBJECTIVE: Unsupervised domain adaptation (UDA) is a powerful approach in tackling domain discrepancies and reducing the burden of laborious and error-prone pixel-level annotations for instance segmentation. However, the domain adaptation strategies utilized in previous instance segmentation models pool all the labeled/detected instances together to train the instance-level GAN discriminator, which neglects the differences among multiple instance categories. Such pooling prevents UDA instance segmentation models from learning categorical correspondence between source and target domains for accurate instance classification; METHODS: To tackle this challenge, we propose an Instance Segmentation CycleGAN (ISC-GAN) algorithm for UDA multiclass-instance segmentation. We conduct extensive experiments on the multiclass nuclei recognition task to transfer knowledge from hematoxylin and eosin to immunohistochemistry stained pathology images. Specifically, we fuse CycleGAN with Mask R-CNN to learn categorical correspondence with image-level domain adaptation and virtual supervision. Moreover, we utilize Curriculum Learning to separate the learning process into two steps: (1) learning segmentation only on labeled source data, and (2) learning target domain segmentation with paired virtual labels generated by ISC-GAN. The performance was further improved through experiments with other strategies, including Shared Weights, Knowledge Distillation, and Expanded Source Data. RESULTS: Comparing to the baseline model or the three UDA instance detection and segmentation models, ISC-GAN illustrates the state-of-the-art performance, with 39.1% average precision and 48.7% average recall. The source codes of ISC-GAN are available at https://github.com/sdw95927/InstanceSegmentation-CycleGAN. CONCLUSION: ISC-GAN adapted knowledge from hematoxylin and eosin to immunohistochemistry stained pathology images, suggesting the potential for reducing the need for large annotated pathological image datasets in deep learning and computer vision tasks.


Assuntos
Algoritmos , Currículo , Amarelo de Eosina-(YS) , Hematoxilina , Imuno-Histoquímica
9.
Lancet ; 402(10405): 871-881, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37478883

RESUMO

BACKGROUND: Stereotactic ablative radiotherapy (SABR) is the standard treatment for medically inoperable early-stage non-small-cell lung cancer (NSCLC), but regional or distant relapses, or both, are common. Immunotherapy reduces recurrence and improves survival in people with stage III NSCLC after chemoradiotherapy, but its utility in stage I and II cases is unclear. We therefore conducted a randomised phase 2 trial of SABR alone compared with SABR with immunotherapy (I-SABR) for people with early-stage NSCLC. METHODS: We did an open-label, randomised, phase 2 trial comparing SABR to I-SABR, conducted at three different hospitals in TX, USA. People aged 18 years or older with histologically proven treatment-naive stage IA-IB (tumour size ≤4 cm, N0M0), stage IIA (tumour size ≤5 cm, N0M0), or stage IIB (tumour size >5 cm and ≤7 cm, N0M0) as per the American Joint Committee on Cancer version 8 staging system or isolated parenchymal recurrences (tumour size ≤7 cm) NSCLC (TanyNanyM0 before definitive surgery or chemoradiotherapy) were included in this trial. Participants were randomly assigned (1:1; using the Pocock & Simon method) to receive SABR with or without four cycles of nivolumab (480 mg, once every 4 weeks, with the first dose on the same day as, or within 36 h after, the first SABR fraction). This trial was unmasked. The primary endpoint was 4-year event-free survival (local, regional, or distant recurrence; second primary lung cancer; or death). Analyses were both intention to treat (ITT) and per protocol. This trial is registered with ClinicalTrials.gov (NCT03110978) and is closed to enrolment. FINDINGS: From June 30, 2017, to March 22, 2022, 156 participants were randomly assigned, and 141 participants received assigned therapy. At a median 33 months' follow-up, I-SABR significantly improved 4-year event-free survival from 53% (95% CI 42-67%) with SABR to 77% (66-91%; per-protocol population, hazard ratio [HR] 0·38; 95% CI 0·19-0·75; p=0·0056; ITT population, HR 0·42; 95% CI 0·22-0·80; p=0·0080). There were no grade 3 or higher adverse events associated with SABR. In the I-SABR group, ten participants (15%) had grade 3 immunologial adverse events related to nivolumab; none had grade 3 pneumonitis or grade 4 or higher toxicity. INTERPRETATION: Compared with SABR alone, I-SABR significantly improved event-free survival at 4 years in people with early-stage treatment-naive or lung parenchymal recurrent node-negative NSCLC, with tolerable toxicity. I-SABR could be a treatment option in these participants, but further confirmation from a number of currently accruing phase 3 trials is required. FUNDING: Bristol-Myers Squibb and MD Anderson Cancer Center Alliance, National Cancer Institute at the National Institutes of Health through Cancer Center Core Support Grant and Clinical and Translational Science Award to The University of Texas MD Anderson Cancer Center.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Doença Crônica , Imunoterapia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Estadiamento de Neoplasias , Nivolumabe/efeitos adversos , Recidiva , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/radioterapia , Resultado do Tratamento , Adolescente , Adulto
11.
Front Oncol ; 13: 1025443, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035141

RESUMO

The glucocorticoid receptor (GR) is an important anti-cancer target in lymphoid cancers but has been understudied in solid tumors like lung cancer, although glucocorticoids are often given with chemotherapy regimens to mitigate side effects. Here, we identify a dexamethasone-GR mediated anti-cancer response in a subset of aggressive non-small cell lung cancers (NSCLCs) that harbor Serine/Threonine Kinase 11 (STK11/LKB1) mutations. High tumor expression of carbamoyl phosphate synthase 1 (CPS1) was strongly linked to the presence of LKB1 mutations, was the best predictor of NSCLC dexamethasone (DEX) sensitivity (p < 10-16) but was not mechanistically involved in DEX sensitivity. Subcutaneous, orthotopic and metastatic NSCLC xenografts, biomarker-selected, STK11/LKB1 mutant patient derived xenografts, and genetically engineered mouse models with KRAS/LKB1 mutant lung adenocarcinomas all showed marked in vivo anti-tumor responses with the glucocorticoid dexamethasone as a single agent or in combination with cisplatin. Mechanistically, GR activation triggers G1/S cell cycle arrest in LKB1 mutant NSCLCs by inducing the expression of the cyclin-dependent kinase inhibitor, CDKN1C/p57(Kip2). All findings were confirmed with functional genomic experiments including CRISPR knockouts and exogenous expression. Importantly, DEX-GR mediated cell cycle arrest did not interfere with NSCLC radiotherapy, or platinum response in vitro or with platinum response in vivo. While DEX induced LKB1 mutant NSCLCs in vitro exhibit markers of cellular senescence and demonstrate impaired migration, in vivo DEX treatment of a patient derived xenograft (PDX) STK11/LKB1 mutant model resulted in expression of apoptosis markers. These findings identify a previously unknown GR mediated therapeutic vulnerability in STK11/LKB1 mutant NSCLCs caused by induction of p57(Kip2) expression with both STK11 mutation and high expression of CPS1 as precision medicine biomarkers of this vulnerability.

12.
Nat Med ; 29(3): 593-604, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928818

RESUMO

Neoadjuvant ipilimumab + nivolumab (Ipi+Nivo) and nivolumab + chemotherapy (Nivo+CT) induce greater pathologic response rates than CT alone in patients with operable non-small cell lung cancer (NSCLC). The impact of adding ipilimumab to neoadjuvant Nivo+CT is unknown. Here we report the results and correlates of two arms of the phase 2 platform NEOSTAR trial testing neoadjuvant Nivo+CT and Ipi+Nivo+CT with major pathologic response (MPR) as the primary endpoint. MPR rates were 32.1% (7/22, 80% confidence interval (CI) 18.7-43.1%) in the Nivo+CT arm and 50% (11/22, 80% CI 34.6-61.1%) in the Ipi+Nivo+CT arm; the primary endpoint was met in both arms. In patients without known tumor EGFR/ALK alterations, MPR rates were 41.2% (7/17) and 62.5% (10/16) in the Nivo+CT and Ipi+Nivo+CT groups, respectively. No new safety signals were observed in either arm. Single-cell sequencing and multi-platform immune profiling (exploratory endpoints) underscored immune cell populations and phenotypes, including effector memory CD8+ T, B and myeloid cells and markers of tertiary lymphoid structures, that were preferentially increased in the Ipi+Nivo+CT cohort. Baseline fecal microbiota in patients with MPR were enriched with beneficial taxa, such as Akkermansia, and displayed reduced abundance of pro-inflammatory and pathogenic microbes. Neoadjuvant Ipi+Nivo+CT enhances pathologic responses and warrants further study in operable NSCLC. (ClinicalTrials.gov registration: NCT03158129 .).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Humanos , Nivolumabe/uso terapêutico , Ipilimumab/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Terapia Neoadjuvante , Melanoma/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico
13.
Mod Pathol ; 36(1): 100028, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36788067

RESUMO

Our understanding of the molecular mechanisms underlying postsurgical recurrence of non-small cell lung cancer (NSCLC) is rudimentary. Molecular and T cell repertoire intratumor heterogeneity (ITH) have been reported to be associated with postsurgical relapse; however, how ITH at the cellular level impacts survival is largely unknown. Here we report the analysis of 2880 multispectral images representing 14.2% to 27% of tumor areas from 33 patients with stage I NSCLC, including 17 cases (relapsed within 3 years after surgery) and 16 controls (without recurrence ≥5 years after surgery) using multiplex immunofluorescence. Spatial analysis was conducted to quantify the minimum distance between different cell types and immune cell infiltration around malignant cells. Immune ITH was defined as the variance of immune cells from 3 intratumor regions. We found that tumors from patients having relapsed display different immune biology compared with nonrecurrent tumors, with a higher percentage of tumor cells and macrophages expressing PD-L1 (P =.031 and P =.024, respectively), along with an increase in regulatory T cells (Treg) (P =.018), antigen-experienced T cells (P =.025), and effector-memory T cells (P =.041). Spatial analysis revealed that a higher level of infiltration of PD-L1+ macrophages (CD68+PD-L1+) or antigen-experienced cytotoxic T cells (CD3+CD8+PD-1+) in the tumor was associated with poor overall survival (P =.021 and P =.006, respectively). A higher degree of Treg ITH was associated with inferior recurrence-free survival regardless of tumor mutational burden (P =.022), neoantigen burden (P =.021), genomic ITH (P =.012) and T cell repertoire ITH (P =.001). Using multiregion multiplex immunofluorescence, we characterized ITH at the immune cell level along with whole exome and T cell repertoire sequencing from the same tumor regions. This approach highlights the role of immunoregulatory and coinhibitory signals as well as their spatial distribution and ITH that define the hallmarks of tumor relapse of stage I NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Antígeno B7-H1 , Recidiva Local de Neoplasia/genética , Linfócitos T Citotóxicos/patologia , Linfócitos T CD8-Positivos
14.
J Clin Invest ; 133(2)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36647832

RESUMO

Tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) are effective for many patients with lung cancer with EGFR mutations. However, not all patients are responsive to EGFR TKIs, including even those harboring EGFR-sensitizing mutations. In this study, we quantified the cells and cellular interaction features of the tumor microenvironment (TME) using routine H&E-stained biopsy sections. These TME features were used to develop a prediction model for survival benefit from EGFR TKI therapy in patients with lung adenocarcinoma and EGFR-sensitizing mutations in the Lung Cancer Mutation Consortium 1 (LCMC1) and validated in an independent LCMC2 cohort. In the validation data set, EGFR TKI treatment prolonged survival in the predicted-to-benefit group but not in the predicted-not-to-benefit group. Among patients treated with EGFR TKIs, the predicted-to-benefit group had prolonged survival outcomes compared with the predicted not-to-benefit group. The EGFR TKI survival benefit positively correlated with tumor-tumor interaction image features and negatively correlated with tumor-stroma interaction. Moreover, the tumor-stroma interaction was associated with higher activation of the hepatocyte growth factor/MET-mediated PI3K/AKT signaling pathway and epithelial-mesenchymal transition process, supporting the hypothesis of fibroblast-involved resistance to EGFR TKI treatment.


Assuntos
Neoplasias Pulmonares , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/genética , Microambiente Tumoral/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Mutação
15.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142843

RESUMO

Microbial dysbiosis has emerged as a modulator of oncogenesis and response to therapy, particularly in lung cancer. Here, we investigate the evolution of the gut and lung microbiomes following exposure to a tobacco carcinogen. We performed 16S rRNA-Seq of fecal and lung samples collected prior to and at several timepoints following (nicotine-specific nitrosamine ketone/NNK) exposure in Gprc5a-/- mice that were previously shown to exhibit accelerated lung adenocarcinoma (LUAD) development following NNK exposure. We found significant progressive changes in human-relevant gut and lung microbiome members (e.g., Odoribacter, Alistipes, Akkermansia, and Ruminococus) that are closely associated with the phenotypic development of LUAD and immunotherapeutic response in human lung cancer patients. These changes were associated with decreased short-chain fatty acids (propionic acid and butyric acid) following exposure to NNK. We next sought to study the impact of Lcn2 expression, a bacterial growth inhibitor, given our previous findings on its protective role in LUAD development. Indeed, we found that the loss of Lcn2 was associated with widespread gut and lung microbiome changes at all timepoints, distinct from those observed in our Gprc5a-/- mouse model, including a decrease in abundance and diversity. Our overall findings apprise novel cues implicating microbial phenotypes in the development of tobacco-associated LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Microbiota , Nitrosaminas , Adenocarcinoma/genética , Animais , Butiratos , Carcinógenos , Disbiose/microbiologia , Inibidores do Crescimento , Humanos , Cetonas , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Camundongos , Nicotina , Propionatos , RNA Ribossômico 16S/genética , Receptores Acoplados a Proteínas G , Nicotiana/genética
16.
Cancer Discov ; 12(11): 2626-2645, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36098652

RESUMO

Tumor-infiltrating B and plasma cells (TIB) are prevalent in lung adenocarcinoma (LUAD); however, they are poorly characterized. We performed paired single-cell RNA and B-cell receptor (BCR) sequencing of 16 early-stage LUADs and 47 matching multiregion normal tissues. By integrative analysis of ∼50,000 TIBs, we define 12 TIB subsets in the LUAD and adjacent normal ecosystems and demonstrate extensive remodeling of TIBs in LUADs. Memory B cells and plasma cells (PC) were highly enriched in tumor tissues with more differentiated states and increased frequencies of somatic hypermutation. Smokers exhibited markedly elevated PCs and PCs with distinct differentiation trajectories. BCR clonotype diversity increased but clonality decreased in LUADs, smokers, and with increasing pathologic stage. TIBs were mostly localized within CXCL13+ lymphoid aggregates, and immune cell sources of CXCL13 production evolved with LUAD progression and included elevated fractions of CD4 regulatory T cells. This study provides a spatial landscape of TIBs in early-stage LUAD. SIGNIFICANCE: While TIBs are highly enriched in LUADs, they are poorly characterized. This study provides a much-needed understanding of the transcriptional, clonotypic states and phenotypes of TIBs, unraveling their potential roles in the immunopathology of early-stage LUADs and constituting a road map for the development of TIB-targeted immunotherapies for the treatment of this morbid malignancy. This article is highlighted in the In This Issue feature, p. 2483.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Plasmócitos/patologia , Ecossistema , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma/genética , Prognóstico
17.
JCO Clin Cancer Inform ; 6: e2200040, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35944232

RESUMO

PURPOSE: Advances in biological measurement technologies are enabling large-scale studies of patient cohorts across multiple omics platforms. Holistic analysis of these data can generate actionable insights for translational research and necessitate new approaches for data integration and mining. METHODS: We present a novel approach for integrating data across platforms on the basis of the shared nearest neighbors algorithm and use it to create a network of multiplatform data from the immunogenomic profiling of non-small-cell lung cancer project. RESULTS: Benchmarking demonstrates that the shared nearest neighbors-based network approach outperforms a traditional gene-gene network in capturing established interactions while providing new ones on the basis of the interplay between measurements from different platforms. When used to examine patient characteristics of interest, our approach provided signatures associated with and new leads related to recurrence and TP53 oncogenotype. CONCLUSION: The network developed offers an unprecedented, holistic view into immunogenomic profiling of non-small-cell lung cancer, which can be explored through the accompanying interactive browser that we built.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Software
18.
Lung Cancer ; 172: 19-28, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35973335

RESUMO

OBJECTIVES: Pathologists have routinely observed distinct histologic patterns of growth in early-stage lung adenocarcinoma (LUAD), which have been suggested to be associated with prognosis. Herein, we investigated the relationship between LUAD patterns of growth, as defined by the updated international association for the study of lung cancer (IASLC) grading criteria, and differences in the tumor immune microenvironment to identify predictors of response to immunotherapy. METHODS: 174 resected stage I-III LUAD tumors were classified by histologic pattern of growth (i.e. solid, micropapillary, acinar, papillary, and lepidic) and then grouped as well differentiated, moderately differentiated, and poorly differentiated. Comprehensive multiplatform analysis including whole exome sequencing, gene expression profiling, immunohistochemistry, CIBERSORT, and T-cell receptor sequencing was performed and groups were compared for differences in genomic drivers, immune cell infiltrate, clonality, and survival. Finally, multivariate analysis was performed adjusting for pathologic stage and smoking status. RESULTS: Poorly differentiated tumors demonstrated a strong association with smoking relative to moderately differentiated or well differentiated tumors. However, unlike in prior reports, poorly differentiated tumors were not associated with a worse survival after curative-intent resection. Genomic analysis revealed that poorly differentiated tumors are associated with high tumor mutation burden but showed no association with oncogenic drivers. Immune analyses revealed that poorly differentiated tumors are associated with increased T-cell clonality, expression of PD-L1, and infiltration by cytotoxic CD8 T-cells, activated CD4 T-cells, and pro-inflammatory (M1) macrophages. Finally, multivariate analysis controlling for stage and smoking status confirmed independence of immune differences between IASLC grade groups. CONCLUSIONS: Poorly differentiated tumors, as defined by the updated IASLC grading criteria, are associated with a distinct immunogenic tumor microenvironment that predicts for therapeutic response to immune agents, including checkpoint inhibitors, and should be included in the clinical trial design of immunotherapy studies in early-stage lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão/genética , Antígeno B7-H1 , Biomarcadores Tumorais/genética , Humanos , Neoplasias Pulmonares/patologia , Prognóstico , Microambiente Tumoral/genética
19.
J Exp Clin Cancer Res ; 41(1): 172, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546239

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer death, partially owing to its extensive heterogeneity. The analysis of intertumor heterogeneity has been limited by an inability to concurrently obtain tissue from synchronous metastases unaltered by multiple prior lines of therapy. METHODS: In order to study the relationship between genomic, epigenomic and T cell repertoire heterogeneity in a rare autopsy case from a 32-year-old female never-smoker with left lung primary late-stage lung adenocarcinoma (LUAD), we did whole-exome sequencing (WES), DNA methylation and T cell receptor (TCR) sequencing to characterize the immunogenomic landscape of one primary and 19 synchronous metastatic tumors. RESULTS: We observed heterogeneous mutation, methylation, and T cell patterns across distinct metastases. Only TP53 mutation was detected in all tumors suggesting an early event while other cancer gene mutations were later events which may have followed subclonal diversification. A set of prevalent T cell clonotypes were completely excluded from left-side thoracic tumors indicating distinct T cell repertoire profiles between left-side and non left-side thoracic tumors. Though a limited number of predicted neoantigens were shared, these were associated with homology of the T cell repertoire across metastases. Lastly, ratio of methylated neoantigen coding mutations was negatively associated with T-cell density, richness and clonality, suggesting neoantigen methylation may partially drive immunosuppression. CONCLUSIONS: Our study demonstrates heterogeneous genomic and T cell profiles across synchronous metastases and how restriction of unique T cell clonotypes within an individual may differentially shape the genomic and epigenomic landscapes of synchronous lung metastases.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma de Pulmão/genética , Adulto , Feminino , Humanos , Neoplasias Pulmonares/patologia , Mutação , Sequenciamento do Exoma
20.
Cancer Prev Res (Phila) ; 15(7): 423-434, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35468191

RESUMO

Effects of waterpipe smoking on lung pathobiology and carcinogenesis remain sparse despite the worldwide emergence of this tobacco vector. To address this gap, we investigated the effects of chronic waterpipe smoke (WPS) exposure on lung pathobiology, host immunity, and tumorigenesis using an experimental animal model that is prone to tobacco carcinogens and an exploratory observational analysis of human waterpipe smokers and nonsmokers. Mice exhibited elevated incidence of lung tumors following heavy WPS exposure (5 days/week for 20 weeks) compared to littermates with light WPS (once/week for 20 weeks) or control air. Lungs of mice exposed to heavy WPS showed augmented CD8+ and CD4+ T cell counts along with elevated protumor immune phenotypes including increased IL17A in T/B cells, PD-L1 on tumor and immune cells, and the proinflammatory cytokine IL1ß in myeloid cells. RNA-sequencing (RNA-seq) analysis showed reduced antitumor immune gene signatures in animals exposed to heavy WPS relative to control air. We also performed RNA-seq analysis of airway epithelia from bronchial brushings of cancer-free waterpipe smokers and nonsmokers undergoing diagnostic bronchoscopy. Transcriptomes of normal airway cells in waterpipe smokers, relative to waterpipe nonsmokers, harbored gene programs that were associated with poor clinical outcomes in patients with lung adenocarcinoma, alluding to a WPS-associated molecular injury, like that established in response to cigarette smoking. Our findings support the notion that WPS exhibits carcinogenic effects and constitutes a possible risk factor for lung cancer as well as warrant future studies that can guide evidence-based policies for mitigating waterpipe smoking. PREVENTION RELEVANCE: Potential carcinogenic effects of waterpipe smoking are very poorly understood despite its emergence as a socially acceptable form of smoking. Our work highlights carcinogenic effects of waterpipe smoking in the lung and, thus, accentuate the need for inclusion of individuals with exclusive waterpipe smoking in prevention and smoking cessation studies.


Assuntos
Neoplasias , Produtos do Tabaco , Fumar Cachimbo de Água , Animais , Carcinógenos/toxicidade , Pulmão , Camundongos , Produtos do Tabaco/efeitos adversos , Fumar Cachimbo de Água/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA