Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397083

RESUMO

Spinal cord injury (SCI) leads to devastating sequelae, demanding effective treatments. Recent advancements have unveiled the role of neutrophil extracellular traps (NETs) produced by infiltrated neutrophils in exacerbating secondary inflammation after SCI, making it a potential target for treatment intervention. Previous research has established that intravenous administration of stem cell-derived exosomes can mitigate injuries. While stem cell-derived exosomes have demonstrated the ability to modulate microglial reactions and enhance blood-brain barrier integrity, their impact on neutrophil deactivation, especially in the context of NETs, remains poorly understood. This study aims to investigate the effects of intravenous administration of MSC-derived exosomes, with a specific focus on NET formation, and to elucidate the associated molecular mechanisms. Exosomes were isolated from the cell supernatants of amnion-derived mesenchymal stem cells using the ultracentrifugation method. Spinal cord injuries were induced in Sprague-Dawley rats (9 weeks old) using a clip injury model, and 100 µg of exosomes in 1 mL of PBS or PBS alone were intravenously administered 24 h post-injury. Motor function was assessed serially for up to 28 days following the injury. On Day 3 and Day 28, spinal cord specimens were analyzed to evaluate the extent of injury and the formation of NETs. Flow cytometry was employed to examine the formation of circulating neutrophil NETs. Exogenous miRNA was electroporated into neutrophil to evaluate the effect of inflammatory NET formation. Finally, the biodistribution of exosomes was assessed using 64Cu-labeled exosomes in animal positron emission tomography (PET). Rats treated with exosomes exhibited a substantial improvement in motor function recovery and a reduction in injury size. Notably, there was a significant decrease in neutrophil infiltration and NET formation within the spinal cord, as well as a reduction in neutrophils forming NETs in the circulation. In vitro investigations indicated that exosomes accumulated in the vicinity of the nuclei of activated neutrophils, and neutrophils electroporated with the miR-125a-3p mimic exhibited a significantly diminished NET formation, while miR-125a-3p inhibitor reversed the effect. PET studies revealed that, although the majority of the transplanted exosomes were sequestered in the liver and spleen, a notably high quantity of exosomes was detected in the damaged spinal cord when compared to normal rats. MSC-derived exosomes play a pivotal role in alleviating spinal cord injury, in part through the deactivation of NET formation via miR-125a-3p.


Assuntos
Exossomos , Armadilhas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Traumatismos da Medula Espinal , Ratos , Animais , Ratos Sprague-Dawley , Exossomos/metabolismo , Armadilhas Extracelulares/metabolismo , Distribuição Tecidual , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Administração Intravenosa
2.
ACS Appl Mater Interfaces ; 16(2): 2110-2119, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38141015

RESUMO

RNA and DNA delivery technologies using lipid nanoparticles (LNPs) have advanced significantly, as demonstrated by their successful application in mRNA vaccines. To date, commercially available RNA therapeutics include Onpattro, a 21 bp siRNA, and mRNA vaccines comprising 4300 nucleotides for COVID-19. However, a significant challenge remains in achieving efficient transfection, as the size of the delivered RNA and DNA increases. In contrast to RNA transfection, plasmid DNA (pDNA) transfection requires multiple steps, including cellular uptake, endosomal escape, nuclear translocation, transcription, and translation. The low transfection efficiency of large pDNA is a critical limitation in the development of artificial cells and their cellular functionalization. Here, we introduce polymer-lipid hybrid nanoparticles designed for efficient, large-sized pDNA transfection. We demonstrated that LNPs loaded with positively charged pDNA-polycation core nanoparticles exhibited a 4-fold increase in transfection efficiency for 15 kbp pDNA compared with conventional LNPs, which encapsulate a negatively charged pDNA-polycation core. Based on assessments of the size and internal structure of the polymer-lipid nanoparticles as well as hemolysis and cellular uptake analysis, we propose a strategy to enhance large-sized pDNA transfection using LNPs. This approach holds promise for accelerating the in vivo delivery of large-sized pDNA and advancing the development of artificial cells.


Assuntos
Lipossomos , Nanopartículas , Polieletrólitos , Polímeros , Vacinas de mRNA , Transfecção , DNA/química , Plasmídeos/genética , Nanopartículas/química , RNA , Lipídeos/química
3.
Biomaterials ; 303: 122381, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37935073

RESUMO

Allergen immunotherapy (AIT) is the only curative treatment for allergic diseases. However, AIT has many disadvantages related to efficiency, safety, long-term duration, and patient compliance. Dendritic cells (DCs) have an important role in antigen-specific tolerance induction; thus, DC-targeting strategies to treat allergies such as glutaraldehyde crosslinked antigen to mannoprotein (MAN) have been established. However, glutaraldehyde crosslinking may reduce the antigen presentation efficiency of DCs. To overcome this, we developed a MAN-coated ovalbumin (OVA) nanoparticle (MDO), which uses intermolecular disulfide bond to crosslink OVA and MAN. MDO effectively targeted DCs resulting in tolerogenic DCs, and promoted higher antigen presentation efficiency by DCs compared with OVA or glutaraldehyde crosslinked nanoparticles. In vitro and in vivo experiments showed that DCs exposed to MDO induced Treg cells. Moreover, MDO had low reactivity with anti-OVA antibodies and did not induce anaphylaxis in allergic mice, demonstrating its high safety profile. In a mouse model of allergic asthma, MDO had significant preventative and therapeutic effects when administered orally or subcutaneously. Therefore, MDO represents a promising new approach for the efficient and safe treatment of allergies.


Assuntos
Hipersensibilidade , Nanopartículas , Humanos , Camundongos , Animais , Mananas , Glutaral , Células Dendríticas , Alérgenos , Dessensibilização Imunológica , Nanopartículas/química , Ovalbumina , Imunoterapia/métodos
4.
Commun Biol ; 6(1): 772, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488344

RESUMO

The unremitting emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants necessitates ongoing control measures. Given its rapid spread, the new Omicron subvariant BA.5 requires urgent characterization. Here, we comprehensively analyzed BA.5 with the other Omicron variants BA.1, BA.2, and ancestral B.1.1. Although in vitro growth kinetics of BA.5 was comparable among the Omicron subvariants, BA.5 was much more fusogenic than BA.1 and BA.2. Airway-on-a-chip analysis showed that, among Omicron subvariants, BA.5 had enhanced ability to disrupt the respiratory epithelial and endothelial barriers. Furthermore, in our hamster model, in vivo pathogenicity of BA.5 was slightly higher than that of the other Omicron variants and less than that of ancestral B.1.1. Notably, BA.5 gains efficient virus spread compared with BA.1 and BA.2, leading to prompt immune responses. Our findings suggest that BA.5 has low pathogenicity compared with the ancestral strain but enhanced virus spread /inflammation compared with earlier Omicron subvariants.


Assuntos
COVID-19 , Animais , Cricetinae , SARS-CoV-2 , Virulência , Inflamação
5.
Cell Rep ; 42(3): 112229, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36906852

RESUMO

Intracellular organelles of mammalian cells communicate with one another during various cellular processes. The functions and molecular mechanisms of such interorganelle association remain largely unclear, however. We here identify voltage-dependent anion channel 2 (VDAC2), a mitochondrial outer membrane protein, as a binding partner of phosphoinositide 3-kinase (PI3K), a regulator of clathrin-independent endocytosis downstream of the small GTPase Ras. VDAC2 tethers endosomes positive for the Ras-PI3K complex to mitochondria in response to cell stimulation with epidermal growth factor and promotes clathrin-independent endocytosis, as well as endosome maturation at membrane association sites. With an optogenetics system to induce mitochondrion-endosome association, we find that, in addition to its structural role in such association, VDAC2 is functionally implicated in the promotion of endosome maturation. The mitochondrion-endosome association thus plays a role in the regulation of clathrin-independent endocytosis and endosome maturation.


Assuntos
Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Animais , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Endossomos/metabolismo , Endocitose , Clatrina/metabolismo , Mitocôndrias/metabolismo , Mamíferos/metabolismo
6.
PLoS Pathog ; 18(6): e1010593, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35658055

RESUMO

Flaviviruses, which are globally distributed and cause a spectrum of potentially severe illnesses, pose a major threat to public health. Although Flaviviridae viruses, including flaviviruses, possess similar genome structures, only the flaviviruses encode the non-structural protein NS1, which resides in the endoplasmic reticulum (ER) and is secreted from cells after oligomerization. The ER-resident NS1 is known to be involved in viral genome replication, but the essential roles of secretory NS1 in the virus life cycle are not fully understood. Here we characterized the roles of secretory NS1 in the particle formation of flaviviruses. We first identified an amino acid residue essential for the NS1 secretion but not for viral genome replication by using protein-protein interaction network analyses and mutagenesis scanning. By using the recombinant flaviviruses carrying the identified NS1 mutation, we clarified that the mutant flaviviruses employed viral genome replication. We then constructed a recombinant NS1 with the identified mutation and demonstrated by physicochemical assays that the mutant NS1 was unable to form a proper oligomer or associate with liposomes. Finally, we showed that the functions of NS1 that were lost by the identified mutation could be compensated for by the in trans-expression of Erns of pestiviruses and host exchangeable apolipoproteins, which participate in the infectious particle formation of pestiviruses and hepaciviruses in the family Flaviviridae, respectively. Collectively, our study suggests that secretory NS1 plays a role in the particle formation of flaviviruses through its interaction with the lipid membrane.


Assuntos
Flaviviridae , Flavivirus , Flavivirus/genética , Flavivirus/metabolismo , Glicoproteínas , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
7.
Heart Rhythm ; 19(10): 1725-1735, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660475

RESUMO

BACKGROUND: An aberrant increase in the diastolic calcium concentration ([Ca2+]i) level is a hallmark of heart failure (HF) and the cause of delayed afterdepolarization and ventricular arrhythmia (VA). Although mitochondria play a role in regulating [Ca2+]i, whether they can compensate for the [Ca2+]i abnormality in ventricular myocytes is unknown. OBJECTIVE: The purpose of this study was to investigate whether enhanced Ca2+ uptake of mitochondria may compensate for an abnormal increase in the [Ca2+]i of ventricular myocytes in HF to effectively mitigate VA. METHODS: We used a HF mouse model in which myocardial infarction was induced by permanent left anterior descending coronary artery ligation. The mitochondrial Ca2+ uniporter was stimulated by kaempferol. Ca2+ dynamics and membrane potential were measured using an epifluorescence microscope, a confocal microscope, and the perforated patch-clamp technique. VA was induced in Langendorff-perfused hearts, and hemodynamic parameters were measured using a microtip transducer catheter. RESULTS: Protein expression of the mitochondrial Ca2+ uniporter, as assessed by its subunit expression, did not change between HF and sham mice. Treatment of cardiomyocytes with kaempferol, isolated from HF mice 28 days after coronary ligation, reduced the appearance of aberrant diastolic [Ca2+]i waves and sparks and spontaneous action potentials. Kaempferol effectively reduced VA occurring in Langendorff-perfused hearts. Intravenous administration of kaempferol did not markedly affect left ventricular hemodynamic parameters. CONCLUSION: The effects of kaempferol in HF of mice implied that mitochondria may have the potential to compensate for abnormal [Ca2+]i. Mechanisms involved in mitochondrial Ca2+ uptake may provide novel targets for treatment of HF-associated VA.


Assuntos
Cálcio , Insuficiência Cardíaca , Animais , Arritmias Cardíacas , Cálcio/metabolismo , Canais de Cálcio , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/etiologia , Quempferóis/metabolismo , Quempferóis/farmacologia , Camundongos , Miócitos Cardíacos/metabolismo
8.
Cell Struct Funct ; 47(1): 43-53, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35491102

RESUMO

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has threatened human health and the global economy. Development of additional vaccines and therapeutics is urgently required, but such development with live virus must be conducted with biosafety level 3 confinement. Pseudotyped viruses have been widely adopted for studies of virus entry and pharmaceutical development to overcome this restriction. Here we describe a modified protocol to generate vesicular stomatitis virus (VSV) pseudotyped with SARS-CoV or SARS-CoV-2 spike protein in high yield. We found that a large proportion of pseudovirions produced with the conventional transient expression system lacked coronavirus spike protein at their surface as a result of inhibition of parental VSV infection by overexpression of this protein. Establishment of stable cell lines with an optimal expression level of coronavirus spike protein allowed the efficient production of progeny pseudoviruses decorated with spike protein. This improved VSV pseudovirus production method should facilitate studies of coronavirus entry and development of antiviral agents.Key words: severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, pseudovirus, vesicular stomatitis virus (VSV), spike protein.


Assuntos
Glicoproteína da Espícula de Coronavírus , Vírus da Estomatite Vesicular Indiana , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/biossíntese , Vírus da Estomatite Vesicular Indiana/metabolismo
9.
J Diabetes Investig ; 13(7): 1134-1139, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35377537

RESUMO

Live-cell imaging with fluorescent proteins (FPs) is a powerful tool for investigating the exocytosis processes of hormones. However, the secretion process of glucagon-like peptide-1 (GLP-1) has not been visualized by FPs, which might be because tagging FPs inhibits GLP-1 synthesis through the post-translational processing from proglucagon. Here, we have developed FP-tagged GLP-1 by inserting FPs into the middle of GLP-1 and adding the proglucagon signal peptide. Confocal imaging confirmed that GLP-1 fused to FPs with high folding efficiency showed granular structure, in which secretory vesicle markers colocalized. The fluorescence intensity of FP in the culture supernatant from cells treated with KCl or forskolin was significantly increased compared with those from untreated cells. Furthermore, FP-tagged GLP-1 enables direct visualization of stimulation-dependent exocytosis of GLP-1 at a single granule resolution with total internal reflection fluorescence microscopy. FP-tagged GLP-1 might facilitate the screening of GLP-1 secretagogues and the discovery of new antidiabetic drugs.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Vesículas Secretórias , Linhagem Celular , Exocitose , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Fragmentos de Peptídeos , Proglucagon/metabolismo , Vesículas Secretórias/metabolismo
10.
Front Oncol ; 12: 978875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741698

RESUMO

Recently, Schlafen family member 11 (SLFN11) has been reported to increase the sensitivity of cancer cells to DNA-damaging agents, including platinum derivatives; thus, SLFN11 may be a predictive biomarker for platinum-based chemoradiotherapy (CRT). In this study, we examined whether SLFN11 expression was associated with the therapeutic outcome of platinum-based CRT in head and neck squamous cell carcinoma (HNSCC). We performed immunohistochemical analyses for SLFN11 expression in 161 HNSCC tissues from patients who had been administered cisplatin-based CRT and examined the correlation between SLFN11 expression and progression-free survival (PFS). Additionally, SLFN11 expression was examined in 10 paired samples obtained before and after CRT in patients with local failure. Furthermore, in vitro experiments were performed using several HNSCC cell lines and isogenic SLFN11-knockout cells to assess the association between SLFN11 expression and drug sensitivity. PFS was found to be significantly better in the SLFN11-positive group than in the SLFN11-negative group among the 161 patients (5-year PFS: 78.8% vs. 52.8%, respectively, p < 0.001). Similar results were observed for the PFS at each primary site. The percentage of SLFN11 positivity was lower in tumor samples from patients with local failure after CRT than that in the corresponding primary tumors before CRT in 8 of 10 cases. Results of the in vitro assay demonstrated that SLFN11-knockout cells exhibited reduced sensitivity to DNA-damaging agents but not to the non-DNA-damaging agent docetaxel. Our findings suggest that SLFN11 may serve as a potential biomarker for predicting the response of HNSCC patients to platinum-based CRT.

11.
Nat Commun ; 11(1): 4586, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934222

RESUMO

Frequent mutation of the tumour suppressor RNF43 is observed in many cancers, particularly colon malignancies. RNF43, an E3 ubiquitin ligase, negatively regulates Wnt signalling by inducing degradation of the Wnt receptor Frizzled. In this study, we discover that RNF43 activity requires phosphorylation at a triplet of conserved serines. This phospho-regulation of RNF43 is required for zebrafish development and growth of mouse intestinal organoids. Cancer-associated mutations that abrogate RNF43 phosphorylation cooperate with active Ras to promote tumorigenesis by abolishing the inhibitory function of RNF43 in Wnt signalling while maintaining its inhibitory function in p53 signalling. Our data suggest that RNF43 mutations cooperate with KRAS mutations to promote multi-step tumorigenesis via the Wnt-Ras-p53 axis in human colon cancers. Lastly, phosphomimetic substitutions of the serine trio restored the tumour suppressive activity of extracellular oncogenic mutants. Therefore, harnessing phospho-regulation of RNF43 might be a potential therapeutic strategy for tumours with RNF43 mutations.


Assuntos
Carcinogênese/metabolismo , Receptores Wnt/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Carcinogênese/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/metabolismo , Fosforilação , Proteólise , Receptores Wnt/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Via de Sinalização Wnt
12.
Curr Biol ; 30(4): 670-681.e6, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32004455

RESUMO

When oncogenic transformation or apoptosis occurs within epithelia, the harmful or dead cells are apically extruded from tissues to maintain epithelial homeostasis. However, the underlying molecular mechanism still remains elusive. In this study, we first show, using mammalian cultured epithelial cells and zebrafish embryos, that prior to apical extrusion of RasV12-transformed cells, calcium wave occurs from the transformed cell and propagates across the surrounding cells. The calcium wave then triggers and facilitates the process of extrusion. IP3 receptor, gap junction, and mechanosensitive calcium channel TRPC1 are involved in calcium wave. Calcium wave induces the polarized movement of the surrounding cells toward the extruding transformed cells. Furthermore, calcium wave facilitates apical extrusion, at least partly, by inducing actin rearrangement in the surrounding cells. Moreover, comparable calcium propagation also promotes apical extrusion of apoptotic cells. Thus, calcium wave is an evolutionarily conserved, general regulatory mechanism of cell extrusion.


Assuntos
Sinalização do Cálcio/fisiologia , Transformação Celular Neoplásica/metabolismo , Animais , Cães , Embrião não Mamífero , Células Madin Darby de Rim Canino , Peixe-Zebra
13.
Cell Struct Funct ; 44(2): 183-194, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31735740

RESUMO

The discovery of fluorescent proteins (FPs) has revolutionized cell biology. The fusion of targeting sequences to FPs enables the investigation of cellular organelles and their dynamics; however, occasionally, such fluorescent fusion proteins (FFPs) exhibit behavior different from that of the native proteins. Here, we constructed a color pallet comprising different organelle markers and found that FFPs targeted to the mitochondria were mislocalized when fused to certain types of FPs. Such FPs included several variants of Aequorea victoria green FP (avGFP) and a monomeric variant of the red FP. Because the FFPs that are mislocalized include FPs with faster maturing or folding mutations, the increase in the maturation rate is likely to prevent their expected localization. Indeed, when we reintroduced amino acid substitutions so that the FP sequences were equivalent to that of wild-type avGFP, FFP localization to the mitochondria was significantly enhanced. Moreover, similar amino acid substitutions improved the localization of mitochondria-targeted pHluorin, which is a pH-sensitive variant of GFP, and its capability to monitor pH changes in the mitochondrial matrix. Our findings demonstrate the importance of selecting FPs that maximize FFP function.Key words: fluorescent protein, organelle, fusion protein, mitochondria.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Mitocôndrias/metabolismo , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Hidrozoários
14.
Cell Struct Funct ; 44(2): 195-204, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31735741

RESUMO

The oncogenic tyrosine kinase BCR-ABL activates a variety of signaling pathways and plays a causative role in the pathogenesis of chronic myelogenous leukemia (CML); however, the subcellular distribution of this chimeric protein remains controversial. Here, we report that BCR-ABL is localized to stress granules and that its granular localization contributes to BCR-ABL-dependent leukemogenesis. BCR-ABL-positive granules were not colocalized with any markers for membrane-bound organelles but were colocalized with HSP90a, a component of RNA granules. The number of such granules increased with thapsigargin treatment, confirming that the granules were stress granules. Given that treatment with the ABL kinase inhibitor imatinib and elimination of the N-terminal region of BCR-ABL abolished granule formation, kinase activity and the coiled-coil domain are required for granule formation. Whereas wild-type BCR-ABL rescued the growth defect in IL-3-depleted Ba/F3 cells, mutant BCR-ABL lacking the N-terminal region failed to do so. Moreover, forced tetramerization of the N-terminus-deleted mutant could not restore the growth defect, indicating that granule formation, but not tetramerization, through its N-terminus is critical for BCR-ABL-dependent oncogenicity. Our findings together provide new insights into the pathogenesis of CML by BCR-ABL and open a window for developing novel therapeutic strategies for this disease.Key words: BCR-ABL, subcellular localization, stress granule.


Assuntos
Carcinogênese , Grânulos Citoplasmáticos/enzimologia , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proliferação de Células , Sobrevivência Celular , Humanos , Imagem Óptica , Estresse Fisiológico , Células Tumorais Cultivadas
15.
Cell Struct Funct ; 44(1): 61-74, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30905923

RESUMO

Endocytosis mediates the internalization and ingestion of a variety of endogenous or exogenous substances, including virus particles, under the control of intracellular signaling pathways. We have previously reported that the complex formed between the small GTPase Ras and phosphoinositide 3-kinase (PI3K) translocates from the plasma membrane to endosomes, signaling from which thereby regulates clathrin-independent endocytosis, endosome maturation, influenza virus internalization, and infection. However, the molecular mechanism by which the Ras-PI3K complex is recruited to endosomes remains unclear. Here, we have identified the amino acid sequence responsible for endosomal localization of the Ras-PI3K complex. PI3K lacking this sequence failed to translocate to endosomes, and expression of the peptide comprising this PI3K-derived sequence inhibited clathrin-independent endocytosis, influenza virus internalization, and infection. Moreover, treatment of cells with this peptide in an arginine-rich, cell-penetrating form successfully suppressed influenza virus infection in vitro and ex vivo, making this peptide a potential therapeutic agent against influenza virus infection.Key words: signal transduction, endocytosis, endosome, imaging, influenza virus.


Assuntos
Endocitose/efeitos dos fármacos , Orthomyxoviridae/efeitos dos fármacos , Orthomyxoviridae/fisiologia , Fragmentos de Peptídeos/farmacologia , Fosfatidilinositol 3-Quinase/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Fragmentos de Peptídeos/química , Transporte Proteico/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Proteínas ras/metabolismo
16.
Sci Rep ; 9(1): 1067, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705374

RESUMO

There is large demand for a quantitative method for rapid and ultra-sensitive detection of the influenza virus. Here, we established a digital influenza virus counting (DIViC) method that can detect a single virion without antibody. In the assay, a virion is stochastically entrapped inside a femtoliter reactor array device for the fluorogenic assay of neuraminidase, and incubated for minutes. By analyzing 600,000 reactors, the practical limit of detection reached the order of 103 (PFU)/mL, only 10-times less sensitive than RT-PCR and more than 1000-times sensitive than commercial rapid test kits (RIDTs). Interestingly, neuraminidase activity differed among virions. The coefficient of variance was 30-40%, evidently broader than that of alkaline phosphatase measured as a model enzyme for comparison, suggesting the heterogeneity in size and integrity among influenza virus particles. Sensitivity to oseltamivir also differed between virions. We also tested DIViC using clinical gargle samples that imposes less burden for sampling while with less virus titre. The comparison with RIDTs showed that DIViC was largely superior to RIDTs in the sensitivity with the clinical samples although a few false-positive signals were observed in some clinical samples that remains as a technical challenge.


Assuntos
Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H3N2/enzimologia , Neuraminidase/química , Proteínas Virais/química , Vírion/enzimologia
17.
Cell Host Microbe ; 23(6): 809-818.e5, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29779930

RESUMO

Influenza A virus (IAV) infection is initiated by the attachment of the viral glycoprotein hemagglutinin (HA) to sialic acid on the host cell surface. However, the sialic acid-containing receptor crucial for IAV infection has remained unidentified. Here, we show that HA binds to the voltage-dependent Ca2+ channel Cav1.2 to trigger intracellular Ca2+ oscillations and subsequent IAV entry and replication. IAV entry was inhibited by Ca2+ channel blockers (CCBs) or by knockdown of Cav1.2. The CCB diltiazem also inhibited virus replication in vivo. Reintroduction of wild-type but not the glycosylation-deficient mutants of Cav1.2 restored Ca2+ oscillations and virus infection in Cav1.2-depleted cells, demonstrating the significance of Cav1.2 sialylation. Taken together, we identify Cav1.2 as a sialylated host cell surface receptor that binds HA and is critical for IAV entry.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Células A549 , Animais , Células COS , Canais de Cálcio Tipo L/genética , Chlorocebus aethiops , Cães , Células HEK293 , Células HeLa , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Influenza Humana/patologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/patologia
19.
PLoS Pathog ; 14(1): e1006848, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29338048

RESUMO

Cell surface receptors for phosphatidylserine contribute to the entry of Ebola virus (EBOV) particles, indicating that the presence of phosphatidylserine in the envelope of EBOV is important for the internalization of EBOV particles. Phosphatidylserine is typically distributed in the inner layer of the plasma membrane in normal cells. Progeny virions bud from the plasma membrane of infected cells, suggesting that phosphatidylserine is likely flipped to the outer leaflet of the plasma membrane in infected cells for EBOV virions to acquire it. Currently, the intracellular dynamics of phosphatidylserine during EBOV infection are poorly understood. Here, we explored the role of XK-related protein (Xkr) 8, which is a scramblase responsible for exposure of phosphatidylserine in the plasma membrane of apoptotic cells, to understand its significance in phosphatidylserine-dependent entry of EBOV. We found that Xkr8 and transiently expressed EBOV glycoprotein GP often co-localized in intracellular vesicles and the plasma membrane. We also found that co-expression of GP and viral major matrix protein VP40 promoted incorporation of Xkr8 into ebolavirus-like particles (VLPs) and exposure of phosphatidylserine on their surface, although only a limited amount of phosphatidylserine was exposed on the surface of the cells expressing GP and/or VP40. Downregulating Xkr8 or blocking caspase-mediated Xkr8 activation did not affect VLP production, but they reduced the amount of phosphatidylserine on the VLPs and their uptake in recipient cells. Taken together, our findings indicate that Xkr8 is trafficked to budding sites via GP-containing vesicles, is incorporated into VLPs, and then promote the entry of the released EBOV to cells in a phosphatidylserine-dependent manner.


Assuntos
Ebolavirus/fisiologia , Interações Hospedeiro-Patógeno , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/fisiologia , Vírion/metabolismo , Animais , Chlorocebus aethiops , Células HEK293 , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Células Vero , Proteínas do Core Viral/metabolismo , Liberação de Vírus
20.
Nat Cell Biol ; 19(5): 530-541, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28414314

RESUMO

Recent studies have revealed that newly emerging transformed cells are often apically extruded from epithelial tissues. During this process, normal epithelial cells can recognize and actively eliminate transformed cells, a process called epithelial defence against cancer (EDAC). Here, we show that mitochondrial membrane potential is diminished in RasV12-transformed cells when they are surrounded by normal cells. In addition, glucose uptake is elevated, leading to higher lactate production. The mitochondrial dysfunction is driven by upregulation of pyruvate dehydrogenase kinase 4 (PDK4), which positively regulates elimination of RasV12-transformed cells. Furthermore, EDAC from the surrounding normal cells, involving filamin, drives the Warburg-effect-like metabolic alteration. Moreover, using a cell-competition mouse model, we demonstrate that PDK-mediated metabolic changes promote the elimination of RasV12-transformed cells from intestinal epithelia. These data indicate that non-cell-autonomous metabolic modulation is a crucial regulator for cell competition, shedding light on the unexplored events at the initial stage of carcinogenesis.


Assuntos
Comunicação Celular , Transformação Celular Neoplásica/metabolismo , Metabolismo Energético , Células Epiteliais/metabolismo , Animais , Linhagem Celular Transformada , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Técnicas de Cocultura , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Cães , Feminino , Genes ras , Glucose/metabolismo , Glicólise , Ácido Láctico/metabolismo , Células Madin Darby de Rim Canino , Masculino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Interferência de RNA , Transdução de Sinais , Técnicas de Cultura de Tecidos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA