RESUMO
Scientific analysis for the gravitational wave detector LISA will require theoretical waveforms from extreme-mass-ratio inspirals (EMRIs) that extensively cover all possible orbital and spin configurations around astrophysical Kerr black holes. However, on-the-fly calculations of these waveforms have not yet overcome the high dimensionality of the parameter space. To confront this challenge, we present a user-ready EMRI waveform model for generic (eccentric and inclined) orbits in Kerr spacetime, using an analytical self-force approach. Our model accurately covers all EMRIs with arbitrary inclination and black hole spin, up to modest eccentricity (â²0.3) and separation (â³2-10 M from the last stable orbit). In that regime, our waveforms are accurate at the leading "adiabatic" order, and they approximately capture transient self-force resonances that significantly impact the gravitational wave phase. The model fills an urgent need for extensive waveforms in ongoing data-analysis studies, and its individual components will continue to be useful in future science-adequate waveforms.