Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Phycol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551849

RESUMO

Crocosphaera watsonii is a unicellular N2-fixing (diazotrophic) cyanobacterium observed in tropical and subtropical oligotrophic oceans. As a diazotroph, it can be a source of bioavailable nitrogen (N) to the microbial community in N-limited environments, and this may fuel primary production in the regions where it occurs. Crocosphaera watsonii has been the subject of intense study, both in culture and in field populations. Here, we summarize the current understanding of the phylogenetic and physiological diversity of C. watsonii, its distribution, and its ecological niche. Analysis of the relationships among the individual Crocosphaera species and related free-living and symbiotic lineages of diazotrophs based on the nifH gene have shown that the C. watsonii group holds a basal position and that its sequence is more similar to Rippkaea and Zehria than to other Crocosphaera species. This finding warrants further scrutiny to determine if the placement is related to a horizontal gene transfer event. Here, the nifH UCYN-B gene copy number from a recent synthesis effort was used as a proxy for relative C. watsonii abundance to examine patterns of C. watsonii distribution as a function of environmental factors, like iron and phosphorus concentration, and complimented with a synthesis of C. watsonii physiology. Furthermore, we have summarized the current knowledge of C. watsonii with regards to N2 fixation, photosynthesis, and quantitative modeling of physiology. Because N availability can limit primary production, C. watsonii is widely recognized for its importance to carbon and N cycling in ocean ecosystems, and we conclude this review by highlighting important topics for further research on this important species.

2.
Nat Commun ; 14(1): 6235, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919271

RESUMO

The Arctic Ocean is facing dramatic environmental and ecosystem changes. In this context, an international multiship survey project was undertaken in 2020 to obtain current baseline data. During the survey, unusually low dissolved oxygen and acidified water were found in a high-seas fishable area of the western (Pacific-side) Arctic Ocean. Herein, we show that the Beaufort Gyre shrinks to the east of an ocean ridge and forms a front between the water within the gyre and the water from the eastern (Atlantic-side) Arctic. That phenomenon triggers a frontal northward flow along the ocean ridge. This flow likely transports the low oxygen and acidified water toward the high-seas fishable area; similar biogeochemical properties had previously been observed only on the shelf-slope north of the East Siberian Sea.

4.
ISME J ; 17(8): 1340-1350, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37217593

RESUMO

Dinitrogen (N2) fixation is the major source of reactive nitrogen in the ocean and has been considered to occur specifically in low-latitude oligotrophic oceans. Recent studies have shown that N2 fixation also occurs in the polar regions and thus is a global process, although the physiological and ecological characteristics of polar diazotrophs are not yet known. Here, we successfully reconstructed diazotroph genomes, including that of cyanobacterium UCYN-A (Candidatus 'Atelocyanobacterium thalassa'), from metagenome data corresponding to 111 samples isolated from the Arctic Ocean. These diazotrophs were highly abundant in the Arctic Ocean (max., 1.28% of the total microbial community), suggesting that they have important roles in the Arctic ecosystem and biogeochemical cycles. Further, we show that diazotrophs within genera Arcobacter, Psychromonas, and Oceanobacter are prevalent in the <0.2 µm fraction in the Arctic Ocean, indicating that current methods cannot capture their N2 fixation. Diazotrophs in the Arctic Ocean were either Arctic-endemic or cosmopolitan species from their global distribution patterns. Arctic-endemic diazotrophs, including Arctic UCYN-A, were similar to low-latitude-endemic and cosmopolitan diazotrophs in genome-wide function, however, they had unique gene sets (e.g., diverse aromatics degradation genes), suggesting adaptations to Arctic-specific conditions. Cosmopolitan diazotrophs were generally non-cyanobacteria and commonly had the gene that encodes the cold-inducible RNA chaperone, which presumably makes their survival possible even in deep, cold waters of global ocean and polar surface waters. This study shows global distribution pattern of diazotrophs with their genomes and provides clues to answering the question of how diazotrophs can inhabit polar waters.


Assuntos
Cianobactérias , Água do Mar , Água do Mar/microbiologia , Fixação de Nitrogênio/fisiologia , Ecossistema , Oceanos e Mares , Cianobactérias/genética
5.
Sci Total Environ ; 855: 159564, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36332720

RESUMO

The recent influx of microplastics into the Arctic Ocean may increase environmental stress on the western Arctic marine ecosystem, which is experiencing significant sea-ice loss due to global warming. Quantitative data on microplastics in the western Arctic Ocean are very limited, and the microplastic budget of the water column is completely unknown. To fill in gaps in our knowledge of Arctic microplastics, we observed surface concentrations (number of particles per unit volume of seawater) of meso- and microplastics using a neuston net, and we observed wind speeds and significant wave heights in the Chukchi Sea, Bering Strait, and Bering Sea. From these observations, we estimated the total number (particle inventory) and mass (mass inventory) of microplastics in the entire water column by taking into account the effect of vertical mixing. The particle inventory of microplastics in the Chukchi Sea ranged from 0 to 18,815 pieces km-2 with a mean and standard deviation of 5236 ± 6127 pieces km-2. The mass inventory ranged from 0 to 445 g km-2 with a mean and standard deviation of 124 ± 145 g km-2. Mean particle inventories for the Chukchi Sea were one-thirtieth of those for the Arctic Ocean on the Atlantic side and less than one-tenth of the average for the global ocean, suggesting that the Chukchi Sea is less polluted. However, the annual flux of microplastics from the Pacific Ocean into the Chukchi Sea, estimated from microplastic concentrations in the Bering Strait, was about 5.5 times greater than the total amount of microplastic in the entire Chukchi Sea water. This suggests that microplastic inflows from the Pacific Ocean are accumulating in large amounts in reservoirs other than the Chukchi Sea water (e.g., sea ice and seafloor sediments) or in the downstream regions of the Pacific-origin water.


Assuntos
Microplásticos , Água , Plásticos , Ecossistema , Oceano Pacífico
6.
Glob Chang Biol ; 28(24): 7286-7295, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36164979

RESUMO

Phytoplankton production in the Arctic Ocean is increasing due to global warming-induced sea ice loss, which is generally assessed through satellite observations of surface chlorophyll. Here we show that a diatom bloom can occur near the seafloor rather than at the surface in the open Arctic Ocean. Light can reach the seafloor underlying nutrient-rich bottom water after the spring bloom because the surface water becomes oligotrophic and increases transparency in the region of shallow Arctic shelf. Our microcosm experiment demonstrated that diatoms formed a bloom when sediments on the shelf region, which contained abundant viable diatom cells, were exposed to even weak light reaching the seafloor (~1% of the surface irradiance). Repeated shipboard observations in the shelf region suggested that such bottom-associated blooms occurred occasionally and the primary production was significantly underestimated by satellite observations. The average bottom irradiance (2003-2017) in the Arctic Ocean is particularly promoted in summer in the eastern East Siberian Sea and the Foxe Basin, which were ice-covered throughout the year until the 1990s. Our results imply that hidden bottom-associated blooms are now widespread across the shallow Arctic shelf region.


Assuntos
Diatomáceas , Fitoplâncton , Regiões Árticas , Camada de Gelo , Água , Oceanos e Mares
7.
Opt Express ; 26(24): 32280-32301, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650690

RESUMO

Knowledge on the phenology and distribution of phytoplankton taxonomic groups (PTGs) represent valuable information when studying marine ecosystem, especially in the Arctic Ocean where rapid warming has drastic effects on sea-ice dynamics, which affect the marine food web. Taxonomic groups of phytoplankton can be discriminated based on their pigment signatures, which, in turn, impact their absorption spectra, given that different pigments have different absorption windows in the visible. Using concurrent measurements of phytoplankton diagnostic pigments and absorption spectra (aph) collected in the Bering and Chukchi Seas, a novel and direct approach was designed for simultaneously estimating the biomass concentrations of several PTGs (Ci) as well as their specific absorption coefficient. The chemotaxonomic tool CHEMTAX was applied to twelve diagnostic pigments measured by high-performance liquid chromatography (HPLC). Their results revealed that the phytoplankton community composition was made of nine groups, from which six dominant were identified: diatoms, dinoflagellates, c3-flagellate, haptophytes type 7, two types of prasinophytes. Out of 117 samples, twenty pairs of Ci derived by CHEMTAX and measured aph were randomly selected and used in a linear unmixing model to extract the specific absorption spectral of each group. This step was repeated 1000 times to provide the mean specific absorption of a given phytoplankton group. These specific absorption spectra were used to reconstruct total aph, which was consistent with the measured aph (R2 from 0.8 to 0.95) at all visible wavelengths (400-700 nm). The derived specific absorption spectra were further used with the measured aph(λ) at ten Moderate Resolution Imaging Spectroradiometer (MODIS) wavebands in a linear unmixing model to test the ability to retrieve the concentrations of PTGs from satellite remote sensing. A comparison between estimated and measured Ci showed that the approach used in this study performed best when retrieving five groups (i.e., dinoflagellates, c3-flagellate, haptophytes, two types of prasinophytes) from the nine initially identified using CHEMTAX with a mean absolute percentage error (MAPE) <35%, except for diatoms with a MAPE value of about 45%. Our approach provides a practical basis for estimation of PTGs using aph(λ) derived from satellite observations and field measurements.


Assuntos
Absorciometria de Fóton , Oceanos e Mares , Fitoplâncton/química , Fitoplâncton/classificação , Tecnologia de Sensoriamento Remoto , Regiões Árticas , Cromatografia Líquida de Alta Pressão , Classificação
8.
PLoS One ; 12(11): e0188565, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29182651

RESUMO

The eastern Bering Sea has a vast continental shelf, which contains various endangered marine mammals and large fishery resources. Recently, high numbers of toxic A. tamarense resting cysts were found in the bottom sediment surface of the eastern Bering Sea shelf, suggesting that the blooms have recently occurred. However, little is known about the presence of A. tamarense vegetative cells in the eastern Bering Sea. This study's goals were to detect the occurrence of A. tamarense vegetative cells on the eastern Bering Sea shelf and to find a relationship between environmental factors and their presence. Inter-annual field surveys were conducted to detect A. tamarense cells and environmental factors, such as nutrients, salinity, chlorophyll a, and water temperature, along a transect line on the eastern Bering Sea shelf during the summers of 2004, 2005, 2006, 2009, 2012, and 2013. A. tamarense vegetative cells were detected during every sampling year, and their quantities varied greatly from year to year. The maximum cell densities of A. tamarense observed during the summers of 2004 and 2005 were much higher than the Paralytic shellfish poisoning warning levels, which are greater than 100-1,000 cells L-1, in other subarctic areas. Lower quantities of the species occurred during the summers of 2009, 2012, and 2013. A significant positive correlation between A. tamarense quantity and water temperature and significant negative correlations between A. tamarense quantity and nutrient concentrations (of phosphate, silicate, and nitrite and nitrate) were detected in every sampling period. The surface- and bottom-water temperatures varied significantly from year to year, suggesting that water temperatures, which have been known to affect the cell growth and cyst germination of A. tamarense, might have affected the cells' quantities in the eastern Bering Sea each summer. Thus, an increase in the Bering Sea shelf's water temperature during the summer will increase the frequency and scale of toxic blooms and the toxin contamination of plankton feeders. This poses serious threats to humans and the marine ecosystem.


Assuntos
Dinoflagellida/metabolismo , Eutrofização , Água do Mar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA