Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Prod Res ; 36(9): 2341-2348, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33078638

RESUMO

Phytochemical investigation of a methanolic extract of Sedum sarmentosum collected from Vietnam resulted in the isolation of a new megastigmane glucoside, named sedumoside K (1), together with 17 previously reported compounds (2-18). Structural elucidation of the new compound was achieved by HRFABMS, NMR spectroscopic analysis, acid hydrolysis and quantum ECD calculations. The absolute configuration of compounds 2-6 has been revised. The major isolates were tested for cytotoxic activity against HeLa human cervical cancer cells, and all showed moderate activities.


Assuntos
Antineoplásicos , Medicamentos de Ervas Chinesas , Sedum , Medicamentos de Ervas Chinesas/química , Humanos , Norisoprenoides/química , Compostos Fitoquímicos , Sedum/química
2.
J Tradit Complement Med ; 11(6): 513-519, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765515

RESUMO

Kihito (KIT; Gui Pi Tang) is a traditional herbal medicine that is used for treatment of neuropsychiatric disorders such as depression, anxiety, neurosis and insomnia in China and Japan. Recently, it has also been shown that KIT improves cognitive dysfunction in patients with Alzheimer's disease. In this study, to investigate the mechanisms underlying the effects of KIT on stress-induced brain dysfunctions such as a depressed state and memory impairment, we examined whether KIT prevents behavioral and neurophysiological abnormalities in mice treated chronically with corticosterone (CORT). CORT (40 mg/kg/day, s.c.) and KIT (1000 mg/kg/day, p.o.) were given to 7-week-old male ddY mice for 14 days. Twenty-four hours after the last treatment, depression-like behavior in the forced swim test, spatial memory in the Barnes maze test, cell survival and the number of new-born immature neurons, dendritic spine density and expression levels of mRNA for neurotrophic factors were analyzed. Depression-like behavior and spatial memory impairment were observed in CORT-treated mice without KIT treatment. Hippocampal cell survival, the number of hippocampal new-born immature neurons, hippocampal and accumbal dendritic spine density and mRNA levels for neurotrophic factors such as glial cell line-derived neurotrophic factor (GDNF) were decreased in CORT-treated mice without KIT treatment. KIT prevented CORT-induced depression-like behavior, spatial memory impairment, and decreases in hippocampal cell survival, the number of hippocampal new-born immature neurons, accumbal dendritic spine density and GDNF mRNA. KIT may ameliorate stress-induced brain dysfunctions via prevention of adverse effects of CORT on cell survival, new-born immature neurons, spine density and neurotrophic factors.

3.
Molecules ; 24(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847138

RESUMO

Daily treatment of ovariectomized (OVX) ICR mice with puerarin, a glycosyl isoflavone isolated from the root bark of Pueraria candollei var. mirifica, and 17ß-estradiol attenuated ovariectomy-induced depression-like behavior, as indicated by a decrease in immobility times in the tail suspension test (TST) and the forced swimming test (FST), an increase in the uterine weight and volume, a decrease in serum corticosterone levels, and dose-dependently normalized the downregulated transcription of the brain-derived neurotrophic factor (BDNF) and estrogen receptor (Erß and Erα) mRNAs. Like 17ß-estradiol, puerarin also inhibited ovariectomy-induced suppression of neurogenesis in the dentate gyrus of the hippocampus (increased the number of doublecortin (DCX)-immunosuppressive cells). These results suggest that puerarin exerts antidepressant-like effects in OVX animals, possibly by attenuating the OVX-induced hyperactivation of the HPA axis and/or normalizing the downregulated transcription of BDNF and ER mRNA in the brain.


Assuntos
Depressão/tratamento farmacológico , Estradiol/administração & dosagem , Isoflavonas/administração & dosagem , Ovariectomia/efeitos adversos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Corticosterona/sangue , Depressão/etiologia , Depressão/genética , Depressão/metabolismo , Modelos Animais de Doenças , Proteína Duplacortina , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Isoflavonas/farmacologia , Camundongos , Camundongos Endogâmicos ICR
4.
J Pharmacol Sci ; 141(3): 111-118, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31708401

RESUMO

Post-weaning social isolation of laboratory animals is known to induce many behavioural and neurochemical abnormalities, which resemble neuropsychiatric disorders such as depression and anxiety. Therefore, they can help provide a suitable animal model to investigate the pathophysiology of neuropsychiatric symptoms and explore potential drugs for the treatment of neuropsychiatric diseases. Our recent studies have demonstrated that post-weaning social isolation of mice for no less than one week causes behaviour changes such as reduced attention, impaired social affiliation behaviour, and impaired conditional fear memories. Our neuropharmacological analyses have revealed that these behavioural features are modulated by different neuronal mechanisms, suggesting that post-weaning social isolation of mice can help provide an animal model with comorbid symptoms of patients with developmental disorders, including attention-deficit hyperactivity disorder, autism spectrum disorder, and specific learning disability. In this review, we discuss the neuropharmacological features of developmental disorder-like behaviour induced by post-weaning social isolation in mice to offer new insights into the pathophysiology of developmental disorders and possible therapeutic strategies.


Assuntos
Antagonistas Colinérgicos/farmacologia , Dopaminérgicos/farmacologia , Transtornos da Memória/tratamento farmacológico , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Isolamento Social/psicologia , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Transtornos da Memória/metabolismo , Transtornos da Memória/psicologia , Camundongos , Atividade Motora/efeitos dos fármacos , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/psicologia , Neurogênese/efeitos dos fármacos , Comportamento Social
5.
J Tradit Complement Med ; 9(4): 328-335, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31453129

RESUMO

BACKGROUND AND AIM: The aging-dependent activation of glycogen synthase kinase-3ß (GSK-3ß) has been suggested to be important in the onset of dementia. To discover novel therapeutic Kampo medicines for dementia, we examined the effects of orengedokuto (OGT; huáng lián jiedú tang) and san'oshashinto (SST; san huáng xiè xin tang) on memory deficits and GSK-3ß activity in senescence-accelerated prone mice (SAMP8). EXPERIMENTAL PROCEDURE: The object recognition test (ORT) and conditioned fear memory test (CFT) were employed to elucidate short-term working memory and long-term fear memory. The activity of GSK-3ß and the phosphorylation of related molecules were measured using a kinase assay and Western blotting. RESULTS AND CONCLUSION: OGT and SST attenuated memory deficits in SAMP8 in ORT, but not in CFT. In ex vivo experiments, cortical GSK-3ß activity was significantly stronger in SAMP8 than in SAMR1. The enhanced cortical GSK-3ß activity in SAMP8 was accompanied by a significant increase in the level of phosphorylated collapsin response mediator protein-2 (CRMP2), an important factor that is involved in the regulation of microtubule stability. OGT and SST attenuated not only increases in cortical GSK-3ß activity, but also the levels of phosphorylated CRMP2 in SAMP8. In vitro experiments, flavonoids contained in these kampo medicines, inhibited GSK-3ß activity in concentration-dependent manners. These results suggest that OGT and SST prevent aging-induced short-term working memory deficits by inhibiting aging-dependent elevations in the cortical GSK-3ß activity and subsequent CRMP2 phosphorylation.

6.
Biol Pharm Bull ; 42(8): 1384-1393, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31366873

RESUMO

We previously demonstrated that Bacopa monnier (L.) WETTST. extract (BME) ameliorated cognitive dysfunction in animal models of dementia by enhancing synaptic plasticity-related signaling in the hippocampus and protecting cholinergic neurons in the medial septum. To further clarify the pharmacological features and availability of BME as a novel anti-dementia agent, we investigated whether BME affects neuronal repair using a mouse model of trimethyltin (TMT)-induced neuronal loss/self-repair in the hippocampus. Mice pretreated with TMT (2.8 mg/kg, intraperitoneally (i.p.)) on day 0 were given BME (50 mg/kg, per os (p.o.)) once daily for 15-30 d. Cognitive performance of the animals was elucidated twice by the object location test and modified Y maze test on days 17-20 (Phase I) and days 32-35 (Phase II) or by the passive avoidance test on Phase II. TMT impaired hippocampus-dependent spatial working memory and amygdala-dependent fear-motivated memory. The administration of BME significantly prevented TMT-induced cognitive deficits. The protective effects of BME on the spatial memory deficits were confirmed by Nissl staining of hippocampal tissues and propidium iodide staining of organotypic hippocampal slice cultures. Immunohistochemical studies conducted on days 17 and 32 revealed that thirty days of treatment with BME increased the number of 5-bromo-2'-deoxyuridine (BrdU)-immunopositive cells in the dentate gyrus region of TMT-treated mice, whereas fifteen days of treatment with BME had no effect. These results suggest that BME ameliorates TMT-induced cognition dysfunction mainly via protecting the hippocampal neurons from TMT-induced hippocampal lesions and partly via promoting neuroregeneration in the dentate gyrus regions.


Assuntos
Bacopa , Disfunção Cognitiva/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Animais , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Transtornos da Memória/patologia , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Compostos de Trimetilestanho
7.
J Ethnopharmacol ; 236: 231-239, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-30862522

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kami-shoyo-san (KSS) is a Kampo formula used clinically for menopause-related symptoms in Japan. However, the effect of KSS on autism spectrum disorder (ASD), a developmental disorder with a higher prevalence in males than in females, has not been reported yet. AIM OF THE STUDY: It is accepted generally that dysfunction in the GABAergic system is associated with pathogenesis of ASD. In our previous study, a decrease in brain allopregnanolone (ALLO), a positive allosteric GABAA receptor modulator, induced ASD-like symptoms such as impaired sociability-related performance and increased repetitive self-grooming behavior in male mice, and that KSS ameliorated these behavioral abnormalities via GABAA receptor- and dopamine D1 receptor-mediated mechanisms. In this study, to better understand a gender difference in the prevalence of ASD, we examined whether dissection of ovary (OVX), a major organ secreting progesterone in females, causes ASD-like behaviors in a manner dependent on brain ALLO levels, and if so, how KSS affects the behaviors. MATERIALS AND METHODS: Six-week-old ICR female mice received ovariectomy, and KSS (74 mg/kg and 222 mg/kg, p.o.) were treated before 1 h starting each behavioral test. The sociability, social anxiety-like behavior, and self-grooming behavior were analyzed by the resident-intruder test, mirror chamber test, and open field test, respectively. After finishing the behavioral experiment, the ALLO content in the brain was measured by ELISA. Furthermore, we examined the effects of OVX on the neuro-signaling pathways in the prefrontal cortex and striatum by Western blotting. RESULTS: The results revealed that OVX induced sociability deficits and social anxiety-related behaviors, but not repetitive self-grooming behavior, and that these behavioral changes were accompanied not only by a decrease of brain ALLO levels, but also by impairment of CREB- and CaMKIIα-mediated neuro-signaling in the prefrontal cortex. Moreover, the administration of KSS had no effect on the brain ALLO level, but significantly ameliorated the OVX-induced behavioral and neurochemical changes via facilitation of GABAA receptor and dopamine D1 receptor-mediated neurotransmission. CONCLUSIONS: These findings suggest that a decrease in gonadal hormone-derived ALLO plays a major role in ASD-like behaviors in female mice and that KSS is beneficial for the treatment of ASD in females.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicina Kampo/métodos , Comportamento Social , Animais , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/psicologia , Técnicas de Observação do Comportamento , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/química , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ovariectomia , Córtex Pré-Frontal/química , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Pregnanolona/análise , Pregnanolona/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de GABA-A/metabolismo , Fatores Sexuais , Resultado do Tratamento
8.
PLoS One ; 14(1): e0211266, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30703109

RESUMO

Dysfunctions in the GABAergic system are associated with the pathogenesis of autism spectrum disorder (ASD). However, the mechanisms by which GABAergic system dysfunctions induce the pathophysiology of ASD remain unclear. We previously demonstrated that a selective type I 5α-reductase inhibitor SKF105111 (SKF) induced ASD-like behaviors, such as impaired sociability-related performance and repetitive grooming behaviors, in male mice. Moreover, the effects of SKF were caused by a decrease in the endogenous levels of allopregnanolone (ALLO), a positive allosteric modulator of the GABAA receptor. In this study, we used SKF-treated male mice as a putative animal model of ASD and examined the effects of Kami-shoyo-san (KSS) as an experimental therapeutic strategy for ASD. KSS is a traditional Kampo formula consisting of 10 different crude drugs and has been used for the treatment of neuropsychiatric symptoms. KSS dose-dependently attenuated sociability deficits and suppressed an increase in grooming behaviors in SKF-treated mice without affecting ALLO content in the prefrontal cortex. The systemic administration of the dopamine D1 receptor antagonist SCH23390 reversed the ameliorative effects of KSS. On the other hand, the dopamine D2 receptor antagonist sulpiride and GABAA receptor antagonist bicuculline only attenuated the ameliorative effect of KSS on repetitive self-grooming behaviors. The present results indicate that KSS improves SKF-induced ASD-like behaviors by facilitating dopamine receptor-mediated mechanisms and partly by neurosteroid-independent GABAA receptor-mediated neurotransmission. Therefore, KSS is a potential candidate for the treatment of ASD.


Assuntos
Androstanos/efeitos adversos , Transtorno do Espectro Autista/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Pregnanolona/biossíntese , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/metabolismo , Comportamento Animal/efeitos dos fármacos , Benzazepinas/efeitos adversos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/farmacologia , Asseio Animal/efeitos dos fármacos , Humanos , Masculino , Camundongos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores de GABA-A/metabolismo , Resultado do Tratamento
9.
J Pharmacol Sci ; 139(2): 72-76, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30545726

RESUMO

Kamiuntanto (KUT; Jia Wei Wen Dan Tang in Pinyin) is a traditional Japanese Kampo medicine that is used to treat psychological dysfunction. However, the mechanisms of action of KUT are not understood. To investigate the mechanisms underlying the ameliorative properties of KUT, the effects of KUT on abnormal behaviors of isolation-reared mice and on the prefrontal monoaminergic system were examined. KUT (1000 mg/kg) reversed encounter-induced hyperactivity and increased immobility in the forced swim test in isolation-reared mice, as also found for an antidepressant, fluoxetine (30 mg/kg). In vivo microdialysis showed that KUT (1000 mg/kg) transiently increased the level of extracellular serotonin (5-HT) in the prefrontal cortex. In contrast, an incomplete KUT formula excluding Bambusae Caulis (BC), a component herb of KUT, did not reverse abnormal behaviors of isolation-reared mice or increase prefrontal extracellular 5-HT. Furthermore, the antidepressant-like effect of KUT in the forced swim test was prevented by pretreatment with GR127935, a 5-HT1B antagonist. These findings suggest that KUT may ameliorate depressive symptoms via 5-HTergic systems, and that BC plays an important role in the antidepressant-like effects of KUT.


Assuntos
Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Córtex Pré-Frontal/efeitos dos fármacos , Serotonina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Depressão/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Córtex Pré-Frontal/metabolismo
10.
Neurochem Int ; 118: 42-51, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29705288

RESUMO

Vascular endothelial growth factor (VEGF), a signaling molecule involved in angiogenesis, plays an important role in neuroprotection and neurogenesis. In the present study, we aimed to elucidate the mechanisms underlying endogenous acetylcholine (ACh)-induced VEGF expression in neurons and astrocytes, and identify the neuronal cells contributing to its expression in the medial septal area, a nuclear origin of cholinergic neurons mainly projecting to the hippocampus. The mRNA expression and secretion of VEGF were measured by RT-PCR and ELISA using mouse primary cultured cortical neurons and astrocytes. VEGF expression in the medial septal area was assessed by RT-PCR and immunostaining using mice treated with tacrine [9-amino-1,2,3,4-tetrahydro-acridine HCl (THA); 2.5 mg/kg, i.p.] once daily for 7 days. The THA treatment increased VEGF mRNA expression in neurons in a manner that was reversed by mecamylamine, a nicotinic ACh receptor (AChR) antagonist, whereas in mouse primary cultured astrocytes, carbachol, but not THA dose-dependently increased VEGF mRNA expression and secretion in a manner that was inhibited by scopolamine, a muscarinic AChR inhibitor. In in vivo studies, the administration of THA significantly increased the expression of VEGF in medial septal cholinergic neurons and the effects of THA were significantly blocked by mecamylamine. THA also significantly increased the expression levels of a phosphorylated form of VEGF receptor 2 (p-VEGFR2), an activated form of VEGFR2. The present results suggest that endogenous ACh plays an up-regulatory role for VEGF expression in neurons and astrocytes via different mechanisms. Moreover, endogenous ACh-induced increases in VEGF levels appear to activate VEGFR2 on medial septal cholinergic neurons via an autocrine mechanism.


Assuntos
Acetilcolina/metabolismo , Astrócitos/metabolismo , Neurônios/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Acetilcolina/agonistas , Acetilcolina/antagonistas & inibidores , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Inibidores da Colinesterase/farmacologia , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Camundongos , Camundongos Endogâmicos ICR , Neurônios/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Tacrina/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
11.
J Tradit Complement Med ; 8(1): 81-88, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29321993

RESUMO

Social isolation (SI) mice exhibit behavioral abnormalities such as impairments of sociability- and attention-like behaviors, offering an animal model of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD). This study aimed to identify the effects of Sansoninto (SST; suan zǎo rén tang) on the psychiatric symptoms related to ADHD using SI mice. Four-week-old mice were socially isolated during the experimental period, and SST administration (800 or 2400 mg/kg, p.o.) was started at 2 weeks after starting SI. SST ameliorated SI-induced impairments of sociability- and attention-like behaviors in a dose-dependent manner, and tended to ameliorate contextual- and auditory-dependent fear memory deficit. Moreover, the expression level of Egr-1 was down-regulated by SI stress, and was restored by a high dose of SST. These findings suggest that SST is useful for improvement of psychiatric disorders such as ADHD.

12.
Behav Brain Res ; 334: 6-15, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28743598

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with core symptoms of social impairments and restrictive repetitive behaviors. Recent evidence has implicated a dysfunction in the GABAergic system in the pathophysiology of ASD. We investigated the role of endogenous allopregnanolone (ALLO), a neurosteroidal positive allosteric modulator of GABAA receptors, in the regulation of ASD-like behavior in male mice using SKF105111 (SKF), an inhibitor of type I and type II 5α-reductase, a rate-limiting enzyme of ALLO biosynthesis. SKF impaired sociability-related performance, as analyzed by three different tests; i.e., the 3-chamber test and social interaction in the open field and resident-intruder tests, without affecting olfactory function elucidated by the buried food test. SKF also induced repetitive grooming behavior without affecting anxiety-like behavior. SKF had no effect on short-term spatial working memory or long-term fear memory, but enhanced latent learning ability in male mice. SKF-induced ASD-like behavior in male mice was abolished by the systemic administration of ALLO (1mg/kg, i.p.) and methylphenidate (MPH: 2.5mg/kg, i.p.), a dopamine transporter inhibitor. The effects of SKF on brain ALLO contents in male mice were reversed by ALLO, but not MPH. On the other hand, SKF failed to induce ASD-like behavior or a decline in brain ALLO contents in female mice. These results suggest that ALLO regulates episodes of ASD-like behavior by positively modulating the function of GABAA receptors linked to the dopaminergic system. Moreover, a sex-dependently induced decrease in brain ALLO contents may provide an animal model to study the main features of ASD.


Assuntos
Androstanos , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Pregnanolona/deficiência , Inibidores de 5-alfa Redutase/farmacologia , Animais , Ansiedade/metabolismo , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/psicologia , Encéfalo/efeitos dos fármacos , Medo/fisiologia , Feminino , Asseio Animal/fisiologia , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Metilfenidato/farmacologia , Camundongos Endogâmicos ICR , Psicotrópicos/farmacologia , Caracteres Sexuais , Comportamento Social , Comportamento Estereotipado/fisiologia
13.
BMC Complement Altern Med ; 17(1): 195, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376888

RESUMO

BACKGROUND: Our previous studies demonstrated that post-weaning social isolation (ISO) in mice induces behavior abnormalities such as deficits of sociability- and attention-like behaviors. These deficits can be attenuated by methylphenidate (MPH), a drug used for attention deficit hyperactivity disorder (ADHD), suggesting that ISO mice offer a potential animal model of comorbid developmental disorder with ADHD and autism spectrum disorder symptoms. This study investigated the effects of Kampo formulae, yokukansan (YKS) and keishito (KST), on the neuropsychiatric symptoms of ISO mice to clarify the therapeutic or preventive/delaying potential of these formulae for the treatment of neurodevelopmental disorders. METHODS: Three-to-4-week old male ICR mice were socially isolated during an experimental period and YKS and KST (1523.6 and 2031.8 mg/kg, p.o.) was administered starting from week 2 and week 0 after starting ISO for the analysis of their therapeutic and preventive/delaying potentials, respectively. Sociability, attention-related behavior and fear memory were elucidated by a 3 chamber test, a water-finding test and fear conditioning test, respectively. Moreover, the phosphorylation of neuroplasticity-related signaling molecules in mice hippocampus was analyzed using western blotting. RESULTS: In a therapeutic procedure, YKS ameliorated ISO-induced impairments of attention-like behavior and context-dependent fear memory, but not of sociability, whereas KST had no beneficial effects in ISO mice. In experiments to analyze the preventive/delaying potentials of these treatments, both YKS and KST improved sociability, attention, and context-dependent fear memory deficits. The improvement of sociability in mice by YKS and KST was not inhibited by a dopamine D1 receptor antagonist, suggesting that YKS and KST improved the ISO-induced sociability deficit by other mechanisms besides activation of the dopaminergic system. On the other hand, the beneficial effects of YKS and KST on attention-like behavior were inhibited by a muscarinic antagonist, suggesting that YKS and KST ameliorated ISO-induced attention-like behavior through a cholinergic mechanism. Moreover, the phosphorylated forms of CaMKII and CREB were down-regulated by ISO stress and restored by YKS and KST administration. CONCLUSIONS: These findings suggest that YKS and KST may be useful for the improvement of neurodevelopmental disorders.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Plasticidade Neuronal/efeitos dos fármacos , Isolamento Social , Animais , Comportamento Animal/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Medicina Kampo , Camundongos , Camundongos Endogâmicos ICR , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
14.
Phytomedicine ; 27: 33-38, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28314477

RESUMO

BACKGROUND: Polymethoxyflavone (PMF) is one of bioactive compounds in Citrus Unshiu and included mainly in the peels rather than the fruits, seeds and leaves. HYPOTHESIS/PURPOSE: Supercritical CO2 extraction is one candidate for selective extraction of polymethoxyflavone and in this study, supercritical CO2 extraction with/without ethanol entrainer from Citrus Unshiu peels was examined at a temperature of 333K and a pressure of 30MPa. METHODS: CRE (cyclic AMP response element)-mediated transcriptional assay was examined by using the extracts from supercritical fluid extraction. RESULTS: The results showed that extracts including nobiletin increased with increasing ethanol concentration in supercritical CO2 and the elapsed extraction time. Extracts at ethanol concentration of 5 mol% showed high CRE-mediated transcription activity. This can be caused by activity of the extract including nobiletin in addition to the other methoxylated flavonoid species such as tangeretin. Extracts at ethanol concentration of 50% showed the highest CRE-mediated transcription activity, which can be attributed to flavonoid glycoside such as hesperidin. From our investigations, flavonoid glycoside can be one of promoters of CRE-mediated transcription activity.


Assuntos
Citrus/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Flavonas/análise , Flavonas/farmacologia , Frutas/química , Extratos Vegetais/farmacologia , Japão , Extratos Vegetais/análise
15.
J Alzheimers Dis ; 50(2): 527-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26682681

RESUMO

Aside from accumulation of amyloid-ß (Aß) peptide in the brain, Alzheimer's disease (AD) has been reported as being associated with peroxidation of major phospholipids (e.g., phosphatidylcholine (PtdCho)) and degradation of antioxidative phospholipids (e.g., ethanolamine plasmalogen (PlsEtn)). In addition to its presence in the brain, Aß is also found in blood; however, there is still little information about the levels of PtdCho hydroperoxide (PCOOH) and PlsEtn in the blood of patients with AD. In this study, by assuming a possible interaction among Aß, PCOOH, and PlsEtn in blood circulation, we evaluated the levels of these molecules and correlations in blood samples that had been obtained from our former AD study for PCOOH measurement (Kiko et al., J Alzheimers Dis28, 593-600, 2012). We found that when compared to controls, plasma from patients with AD showed lower concentrations of PlsEtn species, especially PlsEtn bearing the docosahexaenoic acid (DHA) moiety. In addition, lower PlsEtn and higher PCOOH levels were observed in red blood cells (RBCs) of patients with AD. In both AD and control blood samples, RBC PCOOH levels tended to correlate with plasma levels of Aß40, and each PlsEtn species showed different correlations with plasma Aß. These results, together with in vitro data suggesting Aß aggregation due to a decrease in levels of PlsEtn having DHA, led us to deduce that Aß is involved in alterations in levels of PCOOH and PlsEtn species observed in the blood of patients with AD.


Assuntos
Peptídeos beta-Amiloides/sangue , Peróxido de Hidrogênio/sangue , Fosfatidilcolinas/sangue , Plasmalogênios/sangue , Idoso , Feminino , Humanos , Masculino
16.
J Ethnopharmacol ; 164: 37-45, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25660331

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bacopa monnieri (L.) Wettst. (BM) is a medicinal plant which has been not only used as a traditional medicine to improve intelligence and memory but also taken as vegetables in Vietnam for a long time. We previously demonstrated that Bacopa monnieri (BM) alcohol extract attenuated olfactory bulbectomy-induced cognitive deficits and the deterioration of septo-hippocampal cholinergic neurons, suggesting the beneficial effects of BM for dementia patients. AIM OF STUDY: The present study was conducted to further clarify the anti-dementia effects of BM, using transient 2 vessels occlusion (T2VO)-induced cognitive deficits in mice, an animal model of vascular dementia, and also to investigate the constituent(s) contributing to the actions of BM, using oxygen- and glucose-deprivation (OGD)-induced hippocampal cell damage as an in vitro model of ischemia. MATERIALS AND METHODS: In the in vivo experiments, T2VO mice were treated daily with a standardized BM extract (50mg/kg, p.o.) 1 week before and continuously 3 days after surgery. In the in vitro experiments, organotypic hippocampal slice cultures (OHSCs) were incubated with triterpenoid saponins from BM (bacosides) or MK-801 1h before and during a 45-min period of OGD. Neuronal cell damage in OHSCs was analyzed by measurement of propidium iodide uptake 24h after OGD. RESULTS: The BM treatment significantly ameliorated T2VO-induced impairments in non-spatial short term memory performance in the object recognition test. Among the bacosides tested in the in vitro experiments using OHSCs, bacopaside I (25 µM) exhibited potent neuroprotective effects against OGD-induced neuronal cell damage. Double staining with TUNEL and PI revealed that OGD caused necrosis and apoptosis and that bacopaside I attenuated the effects of OGD. The neuroprotective effects of bacopaside I were blocked by the PKC inhibitor Ro-31-8220 and PI3K inhibitor LY294002, but not by the ERK inhibitor U0126. OGD reduced the level of phospho-Akt (p-Akt), an anti-apoptotic factor, in OHSCs. This decrease was reversed by bacopaside I. Moreover, the treatment with bacopaside I itself was able to elevate the level of p-Akt in OHSCs. CONCLUSION: These results suggest that BM was beneficial for the prevention of cognitive deficits related to cerebral ischemia and also that bacopaside I, via PKC and PI3K/Akt mechanisms, played a role in the neuroprotective effects of BM observed in the mouse model.


Assuntos
Bacopa , Demência Vascular/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Demência Vascular/etiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Isquemia/complicações , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Extratos Vegetais/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico
17.
J Pharm Biomed Anal ; 104: 21-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25459756

RESUMO

In our previous study, the daily administration of chotosan (CTS), a Kampo formula consisting of Uncaria and other 10 different crude drugs, ameliorated cognitive deficits in several animal models of dementia including type 2 diabetic db/db mice in a similar manner to tacrine, an acetylcholinesterase inhibitor. The present study investigated the metabonomics of CTS in db/db mice, a type 2 diabetes model, and m/m mice, a non-diabetes control strain, to identify the exogenous and endogenous chemicals susceptible to the administration of CTS using high performance liquid chromatography equipped with an orbitrap hybrid Fourier transform mass spectrometer. The results obtained revealed that the systemic administration of CTS for 20 days led to the distribution of Uncalia plant-derived alkaloids such as rhynchophylline, hirsuteine, and corynoxeine in the plasma and brains of db/db and m/m mice and induced alterations in four major metabolic pathways; i.e., (1) purine, (2) tryptophan, (3) cysteine and methionine, (4) glycerophospholipids in db/db mice. Moreover, glycerophosphocholine (GPC) levels in the plasma and brain were significantly higher in CTS-treated db/db mice than in vehicle-treated control animals. The results of the in vitro experiment using organotypic hippocampal slice cultures demonstrated that GPC (10-30 µM), as well as tacrine, protected hippocampal cells from N-methyl-d-aspartate-induced excitotoxicity in a manner that was reversible with the muscarinic receptor antagonist scopolamine, whereas GPC had no effect on the activity of acetylcholinesterase in vitro. Our results demonstrated that some CTS constituents with neuropharmacological activity were distributed in the plasma and brain tissue following the systemic administration of CTS and may subsequently have affected some metabolic pathways including glycerophospholipid metabolism and cognitive function in db/db mice. Moreover, the present metabonomic analysis suggested that GPC is a putative endogenous chemical that may be involved in the tacrine-like actions of CTS in the present diabetic animal model.


Assuntos
Química Encefálica/efeitos dos fármacos , Demência/etiologia , Diabetes Mellitus Tipo 2/complicações , Medicamentos de Ervas Chinesas/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Cromatografia Líquida de Alta Pressão/métodos , Demência/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Hipocampo/química , Hipocampo/efeitos dos fármacos , Masculino , Espectrometria de Massas/métodos , Camundongos Mutantes
18.
J Ethnopharmacol ; 156: 16-25, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25152298

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Butea superba (BS) is a Thai medicinal plant that has been used as a folk medicine to improve physical and mental conditions and to prevent impaired sexual performance in middle-aged or elderly males. We have previously reported that this plant extract could improve cognitive deficits and depression-like behavior in olfactory bulbectomized mice, an animal model of dementia and depression. AIM OF THE STUDY: In this study we examined the effect of BS on depression-like behavior in mice subjected to unpredictable chronic mild stress (UCMS) to clarify the antidepressant-like activity of BS and the molecular mechanism underlying this effect. MATERIALS AND METHODS: UCMS mice were administered BS daily (300 mg of dried herb weight/kg, p.o.) or a reference drug, imipramine (IMP, 10 mg/kg, i.p.), 1 week after starting the UCMS procedure. We employed the sucrose preference test and the tail suspension test to analyze anhedonia and depression-like behavior of mice, respectively. Serum and brain tissues of mice were used for neurochemical and immunohistochemical studies. The UCMS procedure induced anhedonia and depression-like behavior, and BS treatment, as well as IMP treatment, attenuated these symptoms. UCMS caused an elevation of serum corticosterone level, an index of hyper-activation of the hypothalamic-pituitary-adrenal (HPA) axis, in a manner attenuated by BS and IMP treatment. BS treatment also attenuated UCMS-induced decrease in the expression levels of brain-derived neurotrophic factor (BDNF) mRNA, cyclic AMP-responsive element binding protein (CREB) and a phosphorylated form of N-methyl-d-aspartate receptor subunit NR1, synaptic plasticity-related signaling proteins. Moreover, the UCMS procedure reduced doublecortin-positive cells in the dentate gyrus region of the hippocampus. BS administration reversed these UCMS-induced neurochemical and histological abnormalities. CONCLUSION: These results suggest that BS can ameliorate chronic stress-induced depression-like symptoms and that the effects of BS are mediated by restoring dysfunctions of the HPA axis and synaptic plasticity-related signaling systems and neurogenesis in the hippocampus.


Assuntos
Antidepressivos/farmacologia , Butea , Extratos Vegetais/farmacologia , Estresse Psicológico/tratamento farmacológico , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação a CREB/metabolismo , Doença Crônica , Corticosterona/metabolismo , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos , Sistema Hipófise-Suprarrenal/metabolismo , Plantas Medicinais , RNA Mensageiro/biossíntese
19.
Neurochem Int ; 75: 39-47, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24911952

RESUMO

In our previous study, elevation of endogenous acetylcholine (ACh) by tacrine (THA) rescued NMDA-induced long-lasting hippocampal cell damage via muscarinic M1 receptors. However, the detailed molecular mechanism underlying the effect of ACh is unclear. This study investigated possible involvement of the VEGF signaling system in the rescuing effect of ACh on N-methyl-d-aspartate (NMDA)-induced long-lasting hippocampal cell damage using organotypic hippocampal slice cultures (OHSCs). As previously reported, NMDA pretreatment caused long-lasting hippocampal cell damage in OHSCs in a manner reversible by treatment with THA. The protein kinase C (PKC) inhibitor Ro31-8220, but not the extracellular signal-regulated kinase (ERK) inhibitor U0126, dose-dependently and almost completely abolished the effect of THA. The rescuing effect of THA was also partially but significantly blocked by Ki8751, a selective inhibitor of type 2 vascular endothelial growth factor (VEGF) receptor (VEGFR-2) tyrosine kinase. NMDA pretreatment elevated the expression level of HIF1α, whereas it decreased the expression of VEGF-A. Moreover, NMDA pretreatment reduced the level of phosphorylated VEGFR-2 without apparently affecting the level of VEGFR-2 or ß-actin. These NMDA pretreatment-induced changes were significantly attenuated by THA treatment. Immunohistochemical analysis conducted 6days after NMDA pretreatment revealed that VEGF-A and VEGFR-2 were mainly expressed on astrocytes and neurons, respectively, in OHSCs. In OHSCs pretreated with NMDA, THA treatment induced a morphological and activation-related change in astrocytes expressing VEGF-A. The present results demonstrate that endogenous acetylcholine plays a rescuing role towards excitotoxicity-induced long-lasting hippocampal cell damage in part via paracrine VEGF signaling between astrocytes and hippocampal neurons or autocrine VEGF signaling in hippocampal neurons in OHSCs.


Assuntos
Acetilcolina/fisiologia , Hipocampo/efeitos dos fármacos , N-Metilaspartato/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Western Blotting , Hipocampo/citologia , Hipocampo/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos ICR , Proteína Quinase C/metabolismo
20.
Can J Physiol Pharmacol ; 92(5): 351-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24784468

RESUMO

Neprilysin (NEP) is one of the candidate amyloid ß protein (Aß) degrading enzymes affecting brain Aß clearance. This enzyme declines in the brain with age, which leads to the increased Aß deposition in Alzheimer's disease (AD). Pharmacological activation of NEP during the aging process, therefore, represents a potential strategy to prevent the development of AD. To examine the influence of nobiletin on neprilysin activity, we measured cellular NEP activity in SK-N-SH cells. Moreover, NEP expression was examined by using reverse transcription - polymerase chain reaction and Western blotting. Measurement of cellular NEP activity showed that nobiletin stimulated this in a dose- and time-dependent manner in SK-N-SH cells. Moreover, nobiletin increased the expression of NEP mRNA, and then the levels of NEP protein, also in a dose- and time-dependent manner. Our findings showed that nobiletin promoted NEP gene and protein expression, resulting in enhancement of cellular NEP activity in SK-N-SH cells. This compound could be a novel Aß-degrading compound for use in the development of disease-modifying drugs to prevent and (or) cure AD.


Assuntos
Antioxidantes/farmacologia , Citrus , Flavonas/farmacologia , Neprilisina/metabolismo , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Humanos , Neprilisina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA