Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765536

RESUMO

The development of wind turbines for regions with low wind speeds imposes a challenge to the expansion of the corresponding energy generation capacity. The present work consists of an evaluation of the potential carded jute fiber and jute yarn to be used in the construction of a wind blade for regions of low wind intensity. The fibers used were supplied by Company Textile of Castanhal (Castanhal-Para-Brazil) and used in the study without chemical treatment in the form of single-filament fibers and yarns with a surface twist of 18.5°. The composites were produced through the resin infusion technique and underwent tensile and shear tests using 120-Ohm strain gauges and a blade extensometer to obtain the Young's modulus. In the analysis of the results, the ANOVA test was applied with a 0.05 significance level, followed by Tukey's test. The results showed that long, aligned jute fibers can be a good option for laminated structures applied in composites for small wind turbine blades.

2.
Polymers (Basel) ; 12(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287314

RESUMO

In recent decades, the unique characteristics of natural fibers have promoted their use as reinforcement in polymeric composites. This is verified in several industrial sectors, from packaging to automotive and civil construction. Among the natural fibers, the raffia fiber extracted from the palm tree Raphia vinifera and introduced in the Amazon region a long time ago; started to be considered for the production of polymeric composites only in recent years. For the first time, the effect of raffia fiber length and its alkali treatment on the mechanical properties of a polymer composite was disclosed. Tensile tests were performed in composites with raffia fibers randomly dispersed into terephthalate-based unsaturated polyester resin. The results showed an increase in the Young's moduli, confirmed by ANOVA, for the composite with both untreated and alkali-treated fibers in comparison to the plain polyester, which characterizes a stiffening effect. The composites with alkali treated fibers exhibited similar tensile strength values for all lengths; however, their strengths are lower than those for the untreated condition due to a weak raffia fiber/polyester matrix adhesion. Therefore, this work fills the current knowledge gap on raffia fiber incorporation in polyester matrix and valorizes this abundant Brazilian resource, providing additional information towards the use of raffia fiber in polymer composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA