Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Endocr J ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735737

RESUMO

At the beginning of 2020, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to epidemics worldwide. Obesity and visceral fat accumulation have been reported to be independent risk factors for severe COVID-19. Several reports have focused on the levels of adipocytokines/adipokines, including adiponectin (APN), which is exclusively secreted from adipocytes, although the importance of these factors in acute disease conditions remains unclear. Therefore, we investigated the relationship between serum adiponectin levels and COVID-19 severity. Patients with COVID-19 who were admitted to Sumitomo Hospital (Osaka, Japan) from May through October 2021 were included. A total of 107 patients were enrolled in this study. We obtained the anthropometric and clinical laboratory data of the patients at the time of admission and examined the associations between various parameters and COVID-19 severity. The mean period from onset to admission was 6.5 ± 2.8 days. We divided the patients into "non-severe" (mild, moderate-I and moderate-II) (n = 80) and "severe" (n = 27) groups. The "severe" patients were significantly older than "non-severe" patients. Additionally, no significant differences were observed in BMI, sex, or the period from onset to admission. The serum adiponectin levels of "severe" patients at the time of admission were significantly greater than those of "non-severe" patients even after adjusting for age, sex, and BMI. These results suggest that the serum APN levels at the time of admission can predict COVID-19 severity. However, further investigations on the changes in APN levels in acute diseases are needed.

2.
Cancer Sci ; 115(5): 1706-1717, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433527

RESUMO

The majority of low-grade isocitrate dehydrogenase-mutant (IDHmt) gliomas undergo malignant progression (MP), but their underlying mechanism remains unclear. IDHmt gliomas exhibit global DNA methylation, and our previous report suggested that MP could be partly attributed to passive demethylation caused by accelerated cell cycles. However, during MP, there is also active demethylation mediated by ten-eleven translocation, such as DNA hydroxymethylation. Hydroxymethylation is reported to potentially contribute to gene expression regulation, but its role in MP remains under investigation. Therefore, we conducted a comprehensive analysis of hydroxymethylation during MP of IDHmt astrocytoma. Five primary/malignantly progressed IDHmt astrocytoma pairs were analyzed with oxidative bisulfite and the Infinium EPIC methylation array, detecting 5-hydroxymethyl cytosine at over 850,000 locations for region-specific hydroxymethylation assessment. Notably, we observed significant sharing of hydroxymethylated genomic regions during MP across the samples. Hydroxymethylated CpGs were enriched in open sea and intergenic regions (p < 0.001), and genes undergoing hydroxymethylation were significantly associated with cancer-related signaling pathways. RNA sequencing data integration identified 91 genes with significant positive/negative hydroxymethylation-expression correlations. Functional analysis suggested that positively correlated genes are involved in cell-cycle promotion, while negatively correlated ones are associated with antineoplastic functions. Analyses of The Cancer Genome Atlas clinical data on glioma were in line with these findings. Motif-enrichment analysis suggested the potential involvement of the transcription factor KLF4 in hydroxymethylation-based gene regulation. Our findings shed light on the significance of region-specific DNA hydroxymethylation in glioma MP and suggest its potential role in cancer-related gene expression and IDHmt glioma malignancy.


Assuntos
Neoplasias Encefálicas , Metilação de DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glioma , Isocitrato Desidrogenase , Fator 4 Semelhante a Kruppel , Mutação , Humanos , Isocitrato Desidrogenase/genética , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ilhas de CpG/genética , Feminino , Masculino , Astrocitoma/genética , Astrocitoma/patologia , Astrocitoma/metabolismo , Pessoa de Meia-Idade , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Adulto
3.
Sci Rep ; 14(1): 3620, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351156

RESUMO

Pharmacological activation of hypoxia-inducible factor 1 (HIF-1), a hypoxia-responsive transcription factor, has attracted increasing attention due to its efficacy not only in renal anemia but also in various disease models. Our study demonstrated that a HIF-1 activator enhanced extracellular vesicle (EV) production from cultured endothelial cells synergistically with adiponectin, an adipocyte-derived factor, through both transcriptional induction and posttranscriptional stabilization of an adiponectin binding partner, T-cadherin. Increased EV levels were observed in wild-type mice but not in T-cadherin null mice after consecutive administration of roxadustat. Adiponectin- and T-cadherin-dependent increased EV production may be involved in the pleiotropic effects of HIF-1 activators.


Assuntos
Adiponectina , Caderinas , Vesículas Extracelulares , Camundongos , Animais , Fator 1 Induzível por Hipóxia , Células Endoteliais , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ativação Transcricional
4.
Endocr J ; 71(1): 55-63, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030259

RESUMO

Visceral fat accumulation is a major determinant of type 2 diabetes mellitus and cardiovascular diseases. Recent studies have reported that glutamate is the most elevated amino acid in the plasma amino acid profile in patients with obesity and/or visceral fat accumulation. Here, we show the relationship between plasma glutamate and the clinical features of patients with type 2 diabetes. The study subjects were 62 (28 men and 34 women) Japanese patients with type 2 diabetes. Blood profiles, including glutamate and adiponectin (APN) levels and estimated visceral fat area (eVFA), were measured. We also evaluated the plasma amino acid levels in mice with or without obesity by GC/MS analysis. In patients with type 2 diabetes, plasma glutamate was positively correlated with BMI, eVFA, and fasting insulin but negatively correlated with APN and duration of diabetes. Additionally, multiple regression analysis revealed that plasma glutamate was a significant determinant of APN. The plasma glutamate level was most significantly increased in obese mice compared to control mice, and it was negatively correlated with APN. These results suggest that the level of plasma glutamate could be a strong indicator of adipocyte dysfunction in patients with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Masculino , Humanos , Feminino , Animais , Camundongos , Adiponectina , Ácido Glutâmico , Obesidade , Insulina
5.
J Biol Chem ; 299(9): 105114, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524131

RESUMO

Exosomes, extracellular vesicles (EVs) produced within cells, mediate both the disposal of intracellular waste and communication with distant cells, and they are involved in a variety of disease processes. Although disease modifications of exosome cargos have been well studied, it has been poorly investigated how disease processes, such as endoplasmic reticulum (ER) stress, affect EV production. We previously reported that adiponectin, an adipocyte-secreted salutary factor, increases systemic exosome levels through T-cadherin-mediated enhancement of exosome biogenesis. In the present study, we demonstrated that adiponectin/T-cadherin-dependent EV production was susceptible to ER stress and that low-dose tunicamycin significantly reduced EV production in the presence, but not in the absence, of adiponectin. Moreover, pharmacological or genetic activation of inositol-requiring enzyme 1α, a central regulator of ER stress, downregulated T-cadherin at the mRNA and protein levels as well as attenuated EV production. In addition, adiponectin/T-cadherin-independent EV production was attenuated under ER stress conditions. Repeated administration of tunicamycin to mice decreased circulating small EVs without decreasing tissue T-cadherin expression. Mechanistically, inositol-requiring enzyme 1α activation by silencing of the X-box binding protein 1 transcription factor upregulated the canonical interferon pathway and decreased EV production. The interferon pathway, when it was activated by polyinosinic-polycytidylic acid, also significantly attenuated EV production. Thus, we concluded that ER stress decreases exosome production through adiponectin/T-cadherin-dependent and -independent pathways.


Assuntos
Adiponectina , Caderinas , Estresse do Retículo Endoplasmático , Exossomos , Animais , Camundongos , Adiponectina/metabolismo , Caderinas/biossíntese , Caderinas/genética , Caderinas/metabolismo , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Inositol/metabolismo , Interferons/imunologia , Poli I-C/imunologia , Tunicamicina/farmacologia
6.
Endocr J ; 70(6): 635-645, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37062722

RESUMO

The fat-derived factor, adiponectin, is considered a salutary circulating factor. We recently demonstrated that native adiponectin binds T-cadherin and promotes intracellular biogenesis and secretion of the exosome. Exosomes play important roles in various aspects of homeostasis, including glucose and energy metabolism. However, it remains unclear whether and how the promotion of exosome production by adiponectin in vivo is beneficial for glucose and lipid metabolism. In the present study, overexpression of human adiponectin in mice resulted in an increased number of circulating exosomes, but it did not significantly improve glucose metabolism, change body weights, or change triglyceride clearance under a high-fat diet. Multiple small doses of streptozotocin increased blood glucose and decreased triglyceride clearance similarly in both wild-type and transgenic mice. Thus, these results indicated that human adiponectin overexpression in mice increases plasma exosomes but does not significantly influence glucose and lipid metabolism.


Assuntos
Exossomos , Glucose , Camundongos , Animais , Humanos , Glucose/metabolismo , Metabolismo dos Lipídeos/genética , Adiponectina/genética , Exossomos/genética , Exossomos/metabolismo , Camundongos Transgênicos , Triglicerídeos/metabolismo
8.
Biomedicines ; 11(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36979653

RESUMO

BACKGROUND: The effects of uric acid (UA)-lowering therapy with xanthine oxidoreductase (XOR) inhibitors on the development of cardiovascular diseases remain controversial. Based on recent findings that plasma XOR activity increased in liver disease conditions, we conducted a sub-analysis of the BEYOND-UA study to examine the differential effects of topiroxostat on arterial stiffness based on liver function in hyperuricemic individuals with hypertension. METHODS: Sixty-three subjects treated with topiroxostat were grouped according to baseline alanine aminotransferase (ALT) levels (above or below cut-off values of 22, 30, or 40 U/L). The primary endpoint was changes in the cardio-ankle vascular index (CAVI) from baseline to 24 weeks. RESULTS: Significant reductions in CAVI during topiroxostat therapy occurred in subjects with baseline ALT ≥30 U/L or ≥40 U/L, and significant between-group differences were detected. Brachial-ankle pulse wave velocity significantly decreased in the ALT-high groups at all cut-off values. Reductions in morning home blood pressure and serum UA were similar regardless of the baseline ALT level. For eleven subjects with available data, ALT-high groups showed high plasma XOR activity, which was significantly suppressed by topiroxostat. CONCLUSIONS: Topiroxostat improved arterial stiffness parameters in hyperuricemic patients with liver dysfunction, which might be related to its inhibitory effect on plasma XOR.

9.
Nutrients ; 15(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36678222

RESUMO

BACKGROUND: Metabolic and bariatric surgery (MBS) has been established to provide long-term weight loss in severe obesity. In this study, we investigated the factors that affect post-operative weight loss, with a particular focus on changes in eating behaviors. METHODS: Time-course changes in body weight and eating behaviors were examined in 49 Japanese patients who underwent laparoscopic sleeve gastrectomy from the first visit to 12 months after surgery. Each eating behavior was evaluated via the questionnaire of the Japan Society for the Study of Obesity. RESULTS: Pre-operative weight reduction mediated by dietary and lifestyle interventions showed significant positive correlations with weight loss outcomes at 12 months after surgery. We observed significant decreases in scores for most of the eating behaviors 12 months after surgery. However, "emotional eating behavior" scores declined temporarily in the early post-operative period of one month but thereafter returned to the pre-operative level at 12 months. Furthermore, increases in the scores for "emotional eating behavior" and "sense of hunger" from 1 to 12 months post-operatively were significantly associated with poor weight loss. CONCLUSIONS: Our results demonstrate the beneficial effects of MBS on obesity-related eating behaviors, as well as highlighting "emotional eating behavior" as requiring particular attention.


Assuntos
Cirurgia Bariátrica , Laparoscopia , Obesidade Mórbida , Humanos , População do Leste Asiático , Resultado do Tratamento , Comportamento Alimentar/psicologia , Obesidade/psicologia , Obesidade Mórbida/cirurgia , Obesidade Mórbida/psicologia , Cirurgia Bariátrica/métodos , Laparoscopia/métodos , Gastrectomia/métodos , Redução de Peso
10.
iScience ; 25(11): 105404, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36439986

RESUMO

Endogenous humoral factors that link systemic and/or local insulin demand to pancreatic ß-cells have not been identified. Here, we demonstrated that T-cadherin, a unique glycosylphosphatidylinositol-anchored cadherin primarily expressed in vascular endothelial cells and cardiac and skeletal muscle cells, but not in pancreatic ß-cells, was secreted as soluble forms and was important for ß-cell proliferation. Cdh13 (T-cadherin) knockout mice exhibited impaired glucose handling due to attenuated ß-cell proliferation under high-fat diet conditions. The gene expression analyses indicated the impairment in cell cycle and Notch signaling in the islets of T-cadherin knockout mice under high-fat diet conditions. In streptozotocin-induced diabetes, the replacement of soluble T-cadherin improved ß-cell mass and blood glucose levels in T-cadherin knockout mice. Recombinant soluble T-cadherin upregulated Notch signaling in cultured murine islets. We concluded that soluble T-cadherin could work as an endogenous humoral factor whose signaling pathways including Notch signaling regulate ß-cell proliferation under diabetic conditions in mice.

11.
Nat Commun ; 13(1): 4501, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042201

RESUMO

KMT2A-rearranged infant acute lymphoblastic leukemia (ALL) represents the most refractory type of childhood leukemia. To uncover the molecular heterogeneity of this disease, we perform RNA sequencing, methylation array analysis, whole exome and targeted deep sequencing on 84 infants with KMT2A-rearranged leukemia. Our multi-omics clustering followed by single-sample and single-cell inference of hematopoietic differentiation establishes five robust integrative clusters (ICs) with different master transcription factors, fusion partners and corresponding stages of B-lymphopoietic and early hemato-endothelial development: IRX-type differentiated (IC1), IRX-type undifferentiated (IC2), HOXA-type MLLT1 (IC3), HOXA-type MLLT3 (IC4), and HOXA-type AFF1 (IC5). Importantly, our deep mutational analysis reveals that the number of RAS pathway mutations predicts prognosis and that the most refractory subgroup of IC2 possesses 100% frequency and the heaviest burden of RAS pathway mutations. Our findings highlight the previously under-appreciated intra- and inter-patient heterogeneity of KMT2A-rearranged infant ALL and provide a rationale for the future development of genomics-guided risk stratification and individualized therapy.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras , Fusão Gênica , Humanos , Lactente , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fatores de Transcrição/genética
12.
Metabolism ; 133: 155236, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688210

RESUMO

BACKGROUND: COVID-19 can cause multiple organ damages as well as metabolic abnormalities such as hyperglycemia, insulin resistance, and new onset of diabetes. The insulin/IGF signaling pathway plays an important role in regulating energy metabolism and cell survival, but little is known about the impact of SARS-CoV-2 infection. The aim of this work was to investigate whether SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in the host cell/tissue, and if so, the potential mechanism and association with COVID-19 pathology. METHODS: To determine the impact of SARS-CoV-2 on insulin/IGF signaling pathway, we utilized transcriptome datasets of SARS-CoV-2 infected cells and tissues from public repositories for a wide range of high-throughput gene expression data: autopsy lungs from COVID-19 patients compared to the control from non-COVID-19 patients; lungs from a human ACE2 transgenic mouse infected with SARS-CoV-2 compared to the control infected with mock; human pluripotent stem cell (hPSC)-derived liver organoids infected with SARS-CoV-2; adipose tissues from a mouse model of COVID-19 overexpressing human ACE2 via adeno-associated virus serotype 9 (AAV9) compared to the control GFP after SARS-CoV-2 infection; iPS-derived human pancreatic cells infected with SARS-CoV-2 compared to the mock control. Gain and loss of IRF1 function models were established in HEK293T and/or Calu3 cells to evaluate the impact on insulin signaling. To understand the mechanistic regulation and relevance with COVID-19 risk factors, such as older age, male sex, obesity, and diabetes, several transcriptomes of human respiratory, metabolic, and endocrine cells and tissue were analyzed. To estimate the association with COVID-19 severity, whole blood transcriptomes of critical patients with COVID-19 compared to those of hospitalized noncritical patients with COVID-19. RESULTS: We found that SARS-CoV-2 infection impaired insulin/IGF signaling pathway genes, such as IRS, PI3K, AKT, mTOR, and MAPK, in the host lung, liver, adipose tissue, and pancreatic cells. The impairments were attributed to interferon regulatory factor 1 (IRF1), and its gene expression was highly relevant to risk factors for severe COVID-19; increased with aging in the lung, specifically in men; augmented by obese and diabetic conditions in liver, adipose tissue, and pancreatic islets. IRF1 activation was significantly associated with the impaired insulin signaling in human cells. IRF1 intron variant rs17622656-A, which was previously reported to be associated with COVID-19 prevalence, increased the IRF1 gene expression in human tissue and was frequently found in American and European population. Critical patients with COVID-19 exhibited higher IRF1 and lower insulin/IGF signaling pathway genes in the whole blood compared to hospitalized noncritical patients. Hormonal interventions, such as dihydrotestosterone and dexamethasone, ameliorated the pathological traits in SARS-CoV-2 infectable cells and tissues. CONCLUSIONS: The present study provides the first scientific evidence that SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in respiratory, metabolic, and endocrine cells and tissues. This feature likely contributes to COVID-19 severity with cell/tissue damage and metabolic abnormalities, which may be exacerbated in older, male, obese, or diabetic patients.


Assuntos
COVID-19 , Insulina , Fator Regulador 1 de Interferon , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , Células HEK293 , Humanos , Insulina/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/metabolismo , Obesidade/patologia , SARS-CoV-2 , Transdução de Sinais
13.
Diabetologia ; 65(7): 1185-1197, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35511238

RESUMO

AIMS/HYPOTHESIS: Immunomodulators blocking cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) or programmed death-ligand 1 (PD-L1) have improved the treatment of a broad spectrum of cancers. These immune checkpoint inhibitors (ICIs) reactivate the immune system against tumour cells but can also trigger autoimmune side effects, including type 1 diabetes. Mesenchymal stem cell (MSC) therapy is the most prevalent cell therapy, with tissue-regenerating, anti-fibrosis and immunomodulatory functions provided by the secretome of the cells. Here, we examined whether systemic MSC treatment could prevent the development of type 1 diabetes in a NOD mouse model. METHODS: The purified PD-L1 monoclonal antibody was administered to induce diabetes in male NOD mice which normally do not develop diabetes. Human adipose-derived MSCs were administered by tail vein injections. T cells, macrophages and monocyte-derived macrophages expressing C-X-C motif chemokine ligand 9 (CXCL9) in pancreatic sections of NOD mice and a cancer patient who developed diabetes following the ICI treatments were analysed by immunofluorescence. Tissue localisation of the injected MSCs, plasma exosome levels and plasma cytokine profiles were also investigated. RESULTS: PD-1/PD-L1 blockade induced diabetes in 16 of 25 (64%) NOD mice which received anti-PD-L1 mAb without hMSCs [MSC(-)], whereas MSC administration decreased the incidence to four of 21 (19%) NOD mice which received anti-PD-L1 mAb and hMSCs [MSC(+)]. The PD-1/PD-L1 blockade significantly increased the area of CD3-positive T cells (6.2-fold) and macrophage-2 (Mac-2) antigen (2.5-fold)- and CXCL9 (40.3-fold)-positive macrophages in the islets. MSCs significantly reduced T cell (45%) and CXCL9-positive macrophage (67%) accumulation in the islets and the occurrence of diabetes. The insulin content (1.9-fold) and islet beta cell area (2.7-fold) were also improved by MSCs. T cells and CXCL9-positive macrophages infiltrated into the intricate gaps between the beta cells in the islets by PD-1/PD-L1 blockade. Such immune cell infiltration was largely prevented by MSCs. The most striking difference was observed in the CXCL9-positive macrophages, which normally did not reside in the beta cell region in the islets but abundantly accumulated in this area after PD-1/PD-L1 blockade and were prevented by MSCs. The CXCL9-positive macrophages were also observed in the islets of a cancer patient who developed diabetes following the administration of ICIs but few CXCL9-positive macrophages were observed in a control patient. Mechanistically, the injected MSCs accumulated in the lung but not in the pancreas and strongly increased plasma exosome levels and changed plasma cytokine profiles. CONCLUSIONS/INTERPRETATION: Our results suggest that MSCs can prevent the incidence of diabetes associated with immune checkpoint cancer therapy and may be worth further consideration for new adjuvant cell therapy.


Assuntos
Diabetes Mellitus Tipo 1 , Células-Tronco Mesenquimais , Neoplasias , Animais , Anticorpos Monoclonais , Antígeno B7-H1/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Inibidores de Checkpoint Imunológico , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo
14.
J Atheroscler Thromb ; 29(12): 1823-1834, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35228485

RESUMO

AIMS: T-cadherin (T-cad) is a specific binding partner of adiponectin (APN), adipocyte-specific secretory protein. APN exhibits organ protection via the T-cad-dependent accumulation onto several tissues such as the aorta, heart, and muscle. Recently, for the first time, we showed that three forms (130, 100, and 30 kDa) of soluble T-cad existed in human serum and correlated with several clinical parameters in patients with type 2 diabetes. Nevertheless, the significance of soluble T-cad has not been elucidated in the acute stage of cardiovascular diseases. We herein examined soluble T-cad concentrations and investigated their clinical significance in patients with emergency hospital admission due to ST-segment elevation myocardial infarction (STEMI). METHODS: This observational study enrolled 47 patients with STEMI who were treated via primary percutaneous coronary intervention (PCI). Soluble T-cad and APN concentrations were measured by using an enzyme-linked immunosorbent assay. This study is registered with the University Hospital Medical Information Network (Number: UMIN 000014418). RESULTS: Serum concentrations of soluble 130 and 100 kDa T-cad rapidly and significantly decreased after hospitalization and reached the bottom at 72 h after admission (p<0.001 and p<0.001, respectively). The patients with high soluble T-cad and low APN concentrations on admission showed a significantly higher area under the curve of serum creatine kinase-MB (p<0.01). CONCLUSION: Serum soluble T-cad concentration changed dramatically in patients with STEMI, and the high T-cad and low APN concentrations on admission were associated with the myocardial infarction size. Further study is needed to investigate the usefulness of categorizing patients with STEMI by serum T-cad and APN for the prediction of severe prognoses.


Assuntos
Caderinas , Creatina Quinase Forma MB , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Adiponectina , Creatina Quinase Forma MB/sangue , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Resultado do Tratamento , Caderinas/sangue
15.
Sci Rep ; 12(1): 4159, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264685

RESUMO

Adiponectin (APN), a protein abundantly secreted from adipocytes, has been reported to possess beneficial effects on cardiovascular diseases in association with its accumulation on target organs and cells by binding to T-cadherin. However, little is known about the role of APN in the development of diabetic microvascular complications, such as diabetic retinopathy (DR). Here we investigated the impact of APN on the progression of early retinal vascular damage using a streptozotocin (STZ)-induced diabetic mouse model. Our immunofluorescence results clearly showed T-cadherin-dependent localization of APN in the vascular endothelium of retinal arterioles, which was progressively decreased during the course of diabetes. Such reduction of retinal APN accompanied the early features of DR, represented by increased vascular permeability, and was prevented by glucose-lowering therapy with dapagliflozin, a selective sodium-glucose co-transporter 2 inhibitor. In addition, APN deficiency resulted in severe vascular permeability under relatively short-term hyperglycemia, together with a significant increase in vascular cellular adhesion molecule-1 (VCAM-1) and a reduction in claudin-5 in the retinal endothelium. The present study demonstrated a possible protective role of APN against the development of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Adiponectina/metabolismo , Animais , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/prevenção & controle , Endotélio Vascular/metabolismo , Glucose/metabolismo , Camundongos , Retina/metabolismo
16.
JCI Insight ; 6(17)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34494551

RESUMO

Xanthine oxidoreductase (XOR) is an enzyme that catalyzes hypoxanthine to xanthine and xanthine to uric acid, respectively. However, the underlying mechanisms of increased plasma XOR and its pathological roles in systemic diseases, such as atherosclerosis, are not fully understood. In this study, we found that changes in plasma XOR activity after bariatric surgery closely associated with those in liver enzymes, but not with those in BMI. In a mouse model of nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH), plasma XOR activity markedly increased. Besides, purine catabolism was accelerated in the plasma per se of NASH mice and human patients with high XOR activity. In our NASH mice, we observed an increased vascular neointima formation consisting of dedifferentiated vascular smooth muscle cells (SMCs), which was significantly attenuated by topiroxostat, a selective XOR inhibitor. In vitro, human liver S9-derived XOR promoted proliferation of SMCs with phenotypic modulation and induced ROS production by catabolizing hypoxanthine released from human endothelial cells. Collectively, the results from human and mouse models suggest that increased plasma XOR activity, mainly explained by excess hepatic leakage, was involved in the pathogenesis of vascular injury, especially in NAFLD/NASH conditions.


Assuntos
Células Endoteliais/metabolismo , Neointima/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Xantina Desidrogenase/sangue , Animais , Biomarcadores/sangue , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neointima/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Estudos Retrospectivos
17.
Nat Commun ; 12(1): 5423, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34538872

RESUMO

Hepatoblastoma (HB) is the most common pediatric liver malignancy; however, hereditary predisposition and acquired molecular aberrations related to HB clinicopathological diversity are not well understood. Here, we perform an integrative genomic profiling of 163 pediatric liver tumors (154 HBs and nine hepatocellular carcinomas) based on the data acquired from a cohort study (JPLT-2). The total number of somatic mutations is precious low (0.52/Mb on exonic regions) but correlated with age at diagnosis. Telomerase reverse transcriptase (TERT) promoter mutations are prevalent in the tween HBs, selective in the transitional liver cell tumor (TLCT, > 8 years old). DNA methylation profiling reveals that classical HBs are characterized by the specific hypomethylated enhancers, which are enriched with binding sites for ASCL2, a regulatory transcription factor for definitive endoderm in Wnt-pathway. Prolonged upregulation of ASCL2, as well as fetal-liver-like methylation patterns of IGF2 promoters, suggests their "cell of origin" derived from the premature hepatoblast, similar to intestinal epithelial cells, which are highly proliferative. Systematic molecular profiling of HB is a promising approach for understanding the epigenetic drivers of hepatoblast carcinogenesis and deriving clues for risk stratification.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Pré-Escolar , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Humanos , Lactente , Estimativa de Kaplan-Meier , Masculino , Mutação , Regiões Promotoras Genéticas/genética , Telomerase/genética , Sequenciamento do Exoma/métodos , beta Catenina/genética
18.
J Clin Endocrinol Metab ; 106(5): 1333-1344, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33539522

RESUMO

CONTEXT: T-cadherin (T-cad) is a glycosylphosphatidylinositol (GPI)-anchored cadherin that mediates adiponectin to induce exosome biogenesis and secretion, protect cardiovascular tissues, promote muscle regeneration, and stimulate therapeutic heart protection by transplanted mesenchymal stem cells. CDH13, the gene locus of T-cad, affects plasma adiponectin levels most strongly, in addition to affecting cardiovascular disease risk and glucose homeostasis. Recently, it has been suggested that T-cad exists in human serum, although the details are still unclear. OBJECTIVE: To validate the existence of T-cad forms in human serum and investigate the association with clinical parameters of type 2 diabetes patients. METHODS: Using newly developed monoclonal antibodies against T-cad, pooled human serum was analyzed, and novel T-cad enzyme-linked immunosorbent assays (ELISAs) were developed. The serum T-cad concentrations of 183 Japanese type 2 diabetes patients were measured in a cross-sectional observational study. The main outcome measure was the existence of soluble T-cad in human serum. RESULTS: There were 3 forms of soluble T-cad: a 130-kDa form with a prodomain, a 100-kDa mature form, and a 30-kDa prodomain in human serum. Using newly developed ELISAs to measure them simultaneously, we found that the 130-kDa form of T-cad positively correlated with plasma adiponectin (r = 0.28, P < .001), although a physiological interaction with adiponectin was not observed in serum. The unique 30-kDa prodomain was associated with several clinical parameters in diabetes patients. CONCLUSION: We identified 3 novel forms of soluble T-cad. Their importance as disease markers and/or biomarkers of adiponectin function and the possible bioactivity of the respective molecules require further investigation.


Assuntos
Caderinas/sangue , Caderinas/isolamento & purificação , Idoso , Animais , Biomarcadores/sangue , Análise Química do Sangue/métodos , Estudos Transversais , Diabetes Mellitus Tipo 2/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Japão , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Isoformas de Proteínas/sangue , Isoformas de Proteínas/isolamento & purificação , Ratos
19.
J Diabetes Investig ; 12(8): 1512-1520, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33211396

RESUMO

AIMS/INTRODUCTION: Xanthine oxidoreductase (XOR) is an enzyme that catalyzes hypoxanthine and xanthine to xanthine and uric acid, respectively. Plasma XOR activity has recently been measured in humans. However, limited information is known about plasma XOR activity in patients with type 2 diabetes mellitus, and its changes after short-term glycemic control treatment. MATERIALS AND METHODS: We enrolled 28 Japanese patients (10 men/18 women) with type 2 diabetes mellitus who were hospitalized to undergo medical treatment for diabetes. Plasma XOR activity, quantified using triple quadrupole mass spectrometry and liquid chromatography, and other clinical parameters were examined at admission and 2 weeks after treatment during hospitalization. Changes in plasma XOR activity after treatment during hospitalization and associated clinical parameters were assessed. RESULTS: At the time of admission, the median plasma XOR activity was 83.1 pmol/h/mL, with a wide range of 14.4-1150 pmol/h/mL. Multiple regression analysis identified serum aspartate transaminase and alanine transaminase levels as significant and independent factors correlating with the baseline plasma XOR. Two weeks of treatment during hospitalization was associated with a significant decrease in plasma XOR activity. Changes in serum aspartate transaminase were also the only significant and independent factor correlating with changes in plasma XOR activity. CONCLUSIONS: A close relationship was observed between plasma XOR activity and liver transaminases in patients with type 2 diabetes mellitus, cross-sectionally, and also across treatment during hospitalization.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/terapia , Xantina Desidrogenase/sangue , Adulto , Idoso , Alanina Transaminase/análise , Povo Asiático , Aspartato Aminotransferases/análise , Estudos Transversais , Feminino , Controle Glicêmico , Hospitalização , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA