Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Front Microbiol ; 15: 1367672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550855

RESUMO

Introduction: Severe dengue is thought to be caused by an excessive host immune response. Methods: To study the pathogenesis of severe dengue, we developed a novel model using LysM Cre+Ifnarflox/flox mice carrying depleted Ifnar expression only in subsets of murine myeloid cells. Results: Although dengue virus (DENV) clinical isolates were not virulent in LysM Cre+Ifnarflox/flox mice, mouse-adapted DV1-5P7Sp and DV3P12/08P4Bm, which were obtained by passaging the spleen or bone marrow of mice, demonstrated 100% lethality with severe vascular leakage in the liver and small intestine. DV1-5P7Sp and DV3P12/08P4Bm harbored five and seven amino acid substitutions, respectively. Infection also induced neutrophil infiltration in the small intestine, and increased expression of IL-6 and MMP-8 and blockade of TNF-α signaling protected the mice, as demonstrated in a previous severe dengue mouse model using C57/BL6 mice lacking both IFN-α/ß and IFN-γ receptors. Notably, the new models with DV1-5P7Sp and DV3P12/08P4Bm showed an increased proliferative capacity of the adapted viruses in the thymus and bone marrow. Discussion: These observations suggest that myeloid cell infection is sufficient to trigger cytokine storm-induced vascular leakage. This model can refine the factors involved in the pathology of severe dengue leading to vascular leakage.

2.
Jpn J Infect Dis ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296541

RESUMO

Since 2019, many studies on COVID-19, which has caused extensive damage as a pandemic, have been ongoing worldwide. These include serological and biochemical studies using sera from patients and animal models. Testing with these sera must be performed after the inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Heat treatment, UV irradiation, and/or gamma-ray irradiation are used to inactivate viruses in serum. Determining the inactivation conditions that ensure the inactivation of viruses and minimize the effect on test results after inactivation is important to ensure worker safety and accuracy of test results. In this study, serum samples containing SARS-CoV-2 were subjected to heat, UV irradiation, and gamma irradiation to determine their inactivation conditions. The viral titers were below the detection limit after heating at 56°C for 1 h or 60°C for 15 min, UV-B irradiation with a transilluminator for 30 min, or gamma ray irradiation with 60Co at 10 kGy. These results provide useful information for safe serological and biochemical experiments.

3.
Microbiol Spectr ; 12(1): e0309123, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38095468

RESUMO

IMPORTANCE: Zoonotic infection of humans with herpes B virus (BV) causes severe neurological diseases. Acyclovir (ACV) and ganciclovir (GCV), most frequently used as anti-herpes drugs, are recommended for prophylaxis and therapy in human BV infection. In this study, we examined the property of BV thymidine kinase (TK) against anti-herpes drugs using a recombinant herpes simplex virus type 1 (HSV-1) carrying BV TK gene. We found that HSV-1 carrying BV TK was similarly sensitive to GCV as HSV-1 carrying varicella zoster virus TK. In addition, we demonstrated that BV TK was not mutated in the GCV- and ACV-resistant HSV-1 carrying BV TK, suggesting that ACV- or GCV-resistant BV might be rare during treatment with these antiviral drugs. These data can provide a new insight into the properties of BV TK in terms of the development of drug resistance.


Assuntos
Herpes Simples , Herpesvirus Cercopitecino 1 , Herpesvirus Humano 1 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Herpesvirus Humano 1/genética , Timidina Quinase/genética , Timidina Quinase/uso terapêutico , Aciclovir/farmacologia , Aciclovir/uso terapêutico , Ganciclovir/farmacologia , Herpes Simples/tratamento farmacológico
4.
Emerg Infect Dis ; 30(1): 177-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086399

RESUMO

Two human patients with Macacine alphaherpesvirus 1 infection were identified in Japan in 2019. Both patients had worked at the same company, which had a macaque facility. The rhesus-genotype B virus genome was detected in cerebrospinal fluid samples from both patients.


Assuntos
Herpesvirus Cercopitecino 1 , Doenças dos Macacos , Animais , Humanos , Japão/epidemiologia , Macaca mulatta , Genótipo
5.
Virus Res ; 340: 199301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096954

RESUMO

Heartland virus (HRTV) causes generalized symptoms, severe shock, and multiple organ failure. We previously reported that interferon-α/ß receptor knockout (IFNAR-/-) mice infected intraperitoneally with 1 × 107 tissue culture-infective dose (TCID50) of HRTV died, while those subcutaneously infected with the same dose of HRTV did not. The pathophysiology of IFNAR-/- mice infected with HRTV and the mechanism underlying the difference in disease severity, which depends on HRTV infection route, were analyzed in this study. The liver, spleen, mesenteric and axillary lymph nodes, and gastrointestinal tract of intraperitoneally (I.P.) infected mice had pathological changes; however, subcutaneously (S.C.) infected mice only had pathological changes in the axillary lymph node and gastrointestinal tract. HRTV RNA levels in the mesenteric lymph node, lung, liver, spleen, kidney, stomach, intestine, and blood were significantly higher in I.P. infected mice than those in S.C. infected mice. Chemokine ligand-1 (CXCL-1), tumor necrosis factor (TNF)-α, interleukin (IL)-12, interferon (IFN)-γ, and IL-10 levels in plasma of I.P. infected mice were higher than those of S.C. infected mice. These results indicated that high levels of viral RNA and the induction of inflammatory responses in HRTV-infected IFNAR-/- mice may be associated with disease severity.


Assuntos
Bunyaviridae , Interferon Tipo I , Receptor de Interferon alfa e beta , Animais , Camundongos , Receptor de Interferon alfa e beta/genética , Camundongos Knockout , Interferons , Fígado , Interleucina-12
6.
PLoS Negl Trop Dis ; 17(12): e0011851, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38100536

RESUMO

Nipah virus (NiV) is a highly pathogenic zoonotic virus that causes severe encephalitis and respiratory diseases and has a high mortality rate in humans (>40%). Epidemiological studies on various fruit bat species, which are natural reservoirs of the virus, have shown that NiV is widely distributed throughout Southeast Asia. Therefore, there is an urgent need to develop effective NiV vaccines. In this study, we generated recombinant vaccinia viruses expressing the NiV glycoprotein (G) or fusion (F) protein using the LC16m8 strain, and examined their antigenicity and ability to induce immunity. Neutralizing antibodies against NiV were successfully induced in hamsters inoculated with LC16m8 expressing NiV G or F, and the antibody titers were higher than those induced by other vaccinia virus vectors previously reported to prevent lethal NiV infection. These findings indicate that the LC16m8-based vaccine format has superior features as a proliferative vaccine compared with other poxvirus-based vaccines. Moreover, the data collected over the course of antibody elevation during three rounds of vaccination in hamsters provide an important basis for the clinical use of vaccinia virus-based vaccines against NiV disease. Trial Registration: NCT05398796.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Vacinas Virais , Animais , Cricetinae , Humanos , Vaccinia virus/genética , Vírus Nipah/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Vacinas Virais/genética , Vacinas Sintéticas/genética , Infecções por Henipavirus/prevenção & controle
7.
PLoS Negl Trop Dis ; 17(11): e0011743, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939119

RESUMO

Dengue is a major health problem in tropical and subtropical regions. Some patients develop a severe form of dengue, called dengue hemorrhagic fever, which can be fatal. Severe dengue is associated with a transient increase in vascular permeability. A cytokine storm is thought to be the cause of the vascular leakage. Although there are various research reports on the pathogenic mechanism, the complete pathological process remains poorly understood. We previously reported that dengue virus (DENV) type 3 P12/08 strain caused a lethal systemic infection and severe vascular leakage in interferon (IFN)-α/ß and γ receptor knockout mice (IFN-α/ß/γRKO mice), and that blockade of TNF-α signaling protected mice. Here, we performed transcriptome analysis of liver and small intestine samples collected chronologically from P12/08-infected IFN-α/ß/γRKO mice in the presence/absence of blockade of TNF-α signaling and evaluated the cytokine and effector-level events. Blockade of TNF-α signaling mainly protected the small intestine but not the liver. Infection induced the selective expansion of IL-17A-producing Vγ4 and Vγ6 T cell receptor (TCR) γδ T cells in the small intestine, and IL-17A, together with TNF-α, played a critical role in the transition to severe disease via the induction of inflammatory cytokines such as TNF-α, IL-1ß, and particularly the excess production of IL-6. Infection also induced the infiltration of neutrophils, as well as neutrophil collagenase/matrix metalloprotease 8 production. Blockade of IL-17A signaling reduced mortality and suppressed the expression of most of these cytokines, including TNF-α, indicating that IL-17A and TNF-α synergistically enhance cytokine expression. Blockade of IL-17A prevented nuclear translocation of NF-κB p65 in stroma-like cells and epithelial cells in the small intestine but only partially prevented recruitment of immune cells to the small intestine. This study provides an overall picture of the pathogenesis of infection in individual mice at the cytokine and effector levels.


Assuntos
Dengue , Viroses , Humanos , Camundongos , Animais , Interleucina-17/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Síndrome da Liberação de Citocina , Citocinas/metabolismo , Camundongos Knockout , Linfócitos T/metabolismo , Intestino Delgado , Viroses/patologia
8.
iScience ; 26(11): 108147, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37876803

RESUMO

The emergence and spread of new SARS-CoV-2 variants with mutations in the spike protein, such as the XBB.1.5 and XBB.1.9.1 sublineages, raise concerns about the efficacy of current COVID-19 vaccines and therapeutic monoclonal antibodies (mAbs). In this study, none of the mAbs we tested neutralized XBB.1.9.1 or XBB.1.5, even at the highest concentration used. We also found that the bivalent mRNA vaccine could enhance humoral immunity against XBB.1.9.1, but that XBB.1.9.1 and XBB.1.5 still evaded humoral immunity induced by vaccination or infection. Moreover, the susceptibility of XBB.1.9.1 to remdesivir, molnupiravir, nirmatrelvir, and ensitrelvir was similar to that of the ancestral strain and the XBB.1.5 isolate in vitro. Finally, we found the replicative fitness of XBB.1.9.1 to be similar to that of XBB.1.5 in hamsters. Our results suggest that XBB.1.9.1 and XBB.1.5 have similar antigenicity and replicative ability, and that the currently available COVID-19 antivirals remain effective against XBB.1.9.1.

9.
Nat Commun ; 14(1): 4198, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452031

RESUMO

SARS-CoV-2 Omicron subvariants have evolved to evade receptor-binding site (RBS) antibodies that exist in diverse individuals as public antibody clones. We rationally selected RBS antibodies resilient to mutations in emerging Omicron subvariants. Y489 was identified as a site of virus vulnerability and a common footprint of broadly neutralizing antibodies against the subvariants. Multiple Y489-binding antibodies were encoded by public clonotypes and additionally recognized F486, potentially accounting for the emergence of Omicron subvariants harboring the F486V mutation. However, a subclass of antibodies broadly neutralized BA.4/BA.5 variants via hydrophobic binding sites of rare clonotypes along with high mutation-resilience under escape mutation screening. A computationally designed antibody based on one of the Y489-binding antibodies, NIV-10/FD03, was able to bind XBB with any 486 mutation and neutralized XBB.1.5. The structural basis for the mutation-resilience of this Y489-binding antibody group may provide important insights into the design of therapeutics resistant to viral escape.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Antivirais , Sítios de Ligação , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
10.
Sci Adv ; 9(24): eadf0661, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37315144

RESUMO

Severe acute respiratory syndrome coronavirus 2-neutralizing antibodies primarily target the spike receptor binding domain (RBD). However, B cell antigen receptors (BCRs) on RBD-binding memory B (Bmem) cells have variation in the neutralizing activities. Here, by combining single Bmem cell profiling with antibody functional assessment, we dissected the phenotype of Bmem cell harboring the potently neutralizing antibodies in coronavirus disease 2019 (COVID-19)-convalescent individuals. The neutralizing subset was marked by an elevated CD62L expression and characterized by distinct epitope preference and usage of convergent VH (variable region of immunoglobulin heavy chain) genes, accounting for the neutralizing activities. Concordantly, the correlation was observed between neutralizing antibody titers in blood and CD62L+ subset, despite the equivalent RBD binding of CD62L+ and CD62L- subset. Furthermore, the kinetics of CD62L+ subset differed between the patients who recovered from different COVID-19 severities. Our Bmem cell profiling reveals the unique phenotype of Bmem cell subset that harbors potently neutralizing BCRs, advancing our understanding of humoral protection.


Assuntos
Subpopulações de Linfócitos B , COVID-19 , Selectina L , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , SARS-CoV-2
11.
iScience ; 26(5): 106694, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37124417

RESUMO

Evaluating the serum cross-neutralization responses after breakthrough infection with various SARS-CoV-2 variants provides valuable insight for developing variant-proof COVID-19 booster vaccines. However, fairly comparing the impact of breakthrough infections with distinct epidemic timing on cross-neutralization responses, influenced by the exposure interval between vaccination and infection, is challenging. To compare the impact of pre-Omicron to Omicron breakthrough infection, we estimated the effects on cross-neutralizing responses by the exposure interval using Bayesian hierarchical modeling. The saturation time required to generate saturated cross-neutralization responses differed by variant, with variants more antigenically distant from the ancestral strain requiring longer intervals of 2-4 months. The breadths of saturated cross-neutralization responses to Omicron lineages were comparable in pre-Omicron and Omicron breakthrough infections. Our results highlight the importance of vaccine dosage intervals of 4 months or longer, regardless of the antigenicity of the exposed antigen, to maximize the breadth of serum cross-neutralization covering SARS-CoV-2 Omicron lineages.

12.
Glob Health Med ; 5(1): 5-14, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36865900

RESUMO

As coronavirus disease 2019 (COVID-19) outbreaks in healthcare facilities are a serious public health concern, we performed a case-control study to investigate the risk of COVID-19 infection in healthcare workers. We collected data on participants' sociodemographic characteristics, contact behaviors, installation status of personal protective equipment, and polymerase chain reaction testing results. We also collected whole blood and assessed seropositivity using the electrochemiluminescence immunoassay and microneutralization assay. In total, 161 (8.5%) of 1,899 participants were seropositive between August 3 and November 13, 2020. Physical contact (adjusted odds ratio 2.4, 95% confidence interval 1.1-5.6) and aerosol-generating procedures (1.9, 1.1-3.2) were associated with seropositivity. Using goggles (0.2, 0.1-0.5) and N95 masks (0.3, 0.1-0.8) had a preventive effect. Seroprevalence was higher in the outbreak ward (18.6%) than in the COVID-19 dedicated ward (1.4%). Results showed certain specific risk behaviors of COVID-19; proper infection prevention practices reduced these risks.

13.
Nat Commun ; 14(1): 1451, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922492

RESUMO

The immunogenicity of mRNA vaccines has not been well studied when compared to different vaccine modalities in the context of additional boosters. Here we show that longitudinal analysis reveals more sustained SARS-CoV-2 spike receptor-binding domain (RBD)-binding IgG titers with the breadth to antigenically distinct variants by the S-268019-b spike protein booster compared to the BNT162b2 mRNA homologous booster. The durability and breadth of RBD-angiotensin-converting enzyme 2 (ACE2) binding inhibitory antibodies are pronounced in the group without systemic adverse events (AEs) after the S-268019-b booster, leading to the elevated neutralizing activities against Omicron BA.1 and BA.5 variants in the stratified group. In contrast, BNT162b2 homologous booster elicited antibodies to spike N-terminal domain in proportion to the AE scores. High-dimensional immune profiling identifies early CD16+ natural killer cell dynamics with CCR3 upregulation, as one of the correlates for the distinct anti-RBD antibody responses by the S-268019-b booster. Our results illustrate the combinational effects of heterologous booster on the immune dynamics and the durability and breadth of recalled anti-RBD antibody responses against emerging virus variants.


Assuntos
Formação de Anticorpos , Vacinas contra COVID-19 , COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Vacinas contra COVID-19/imunologia
14.
Nat Commun ; 14(1): 1620, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959194

RESUMO

The prevalence of the Omicron subvariant BA.2.75 rapidly increased in India and Nepal during the summer of 2022, and spread globally. However, the virological features of BA.2.75 are largely unknown. Here, we evaluated the replicative ability and pathogenicity of BA.2.75 clinical isolates in Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with BA.2, BA.5, or BA.2.75, the replicative ability of BA.2.75 in the lungs is higher than that of BA.2 and BA.5. Of note, BA.2.75 causes focal viral pneumonia in hamsters, characterized by patchy inflammation interspersed in alveolar regions, which is not observed in BA.5-infected hamsters. Moreover, in competition assays, BA.2.75 replicates better than BA.5 in the lungs of hamsters. These results suggest that BA.2.75 can cause more severe respiratory disease than BA.5 and BA.2 in a hamster model and should be closely monitored.


Assuntos
COVID-19 , Animais , Cricetinae , SARS-CoV-2 , Bioensaio , Replicação do DNA , Índia , Mesocricetus
15.
J Virol ; 97(1): e0136622, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36633406

RESUMO

The diversity of SARS-CoV-2 mutations raises the possibility of reinfection of individuals previously infected with earlier variants, and this risk is further increased by the emergence of the B.1.1.529 Omicron variant. In this study, we used an in vivo, hamster infection model to assess the potential for individuals previously infected with SARS-CoV-2 to be reinfected with Omicron variant and we also investigated the pathology associated with such infections. Initially, Syrian hamsters were inoculated with a lineage A, B.1.1.7, B.1.351, B.1.617.2 or a subvariant of Omicron, BA.1 strain and then reinfected with the BA.1 strain 5 weeks later. Subsequently, the impact of reinfection with Omicron subvariants (BA.1 and BA.2) in individuals previously infected with the BA.1 strain was examined. Although viral infection and replication were suppressed in both the upper and lower airways, following reinfection, virus-associated RNA was detected in the airways of most hamsters. Viral replication was more strongly suppressed in the lower respiratory tract than in the upper respiratory tract. Consistent amino acid substitutions were observed in the upper respiratory tract of infected hamsters after primary infection with variant BA.1, whereas diverse mutations appeared in hamsters reinfected with the same variant. Histopathology showed no acute pneumonia or disease enhancement in any of the reinfection groups and, in addition, the expression of inflammatory cytokines and chemokines in the airways of reinfected animals was only mildly elevated. These findings are important for understanding the risk of reinfection with new variants of SARS-CoV-2. IMPORTANCE The emergence of SARS-CoV-2 variants and the widespread use of COVID-19 vaccines has resulted in individual differences in immune status against SARS-CoV-2. A decay in immunity over time and the emergence of variants that partially evade the immune response can also lead to reinfection. In this study, we demonstrated that, in hamsters, immunity acquired following primary infection with previous SARS-CoV-2 variants was effective in preventing the onset of pneumonia after reinfection with the Omicron variant. However, viral infection and multiplication in the upper respiratory tract were still observed after reinfection. We also showed that more diverse nonsynonymous mutations appeared in the upper respiratory tract of reinfected hamsters that had acquired immunity from primary infection. This hamster model reveals the within-host evolution of SARS-CoV-2 and its pathology after reinfection, and provides important information for countermeasures against diversifying SARS-CoV-2 variants.


Assuntos
COVID-19 , Reinfecção , Animais , Cricetinae , Mesocricetus , RNA Viral , SARS-CoV-2/genética
16.
J Vet Med Sci ; 85(3): 329-333, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653150

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) causes lethal hemorrhagic diseases in human, cats, and dogs. Several human cases involving direct transmission of SFTSV from diseased animals have been reported. Therefore, rapid diagnosis in veterinary clinics is important for preventing animal-to-human transmission. Previously, we developed a simplified reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for human that does not require RNA extraction for detecting the SFTSV genome. In this study, we improved the simplified RT-LAMP assay for cats by introducing a dried reaction reagent and investigated the applicability of this method for diagnosing SFTS in cats. SFTSV RNA was detected in 11 of 12 cats naturally infected with SFTSV by RT-LAMP assay using both liquid and dried reagents. The RT-LAMP assay using liquid and dried reagents was also applicable to the detection of SFTSV genes 3-4 days after challenge in cats experimentally infected with SFTSV. The minimum copy number of SFTSV genes for 100% detection using the RT-LAMP assay with liquid and dried reagents was 4.3 × 104 and 9.6 × 104 copies/mL, respectively. Although the RT-LAMP assay using the dried reagent was less sensitive than that using the liquid reagent, it was sufficiently sensitive to detect SFTSV genes in cats with acute-phase SFTS. As the simplified RT-LAMP assay using a dried reagent enables detection of SFTSV genes more readily than the assay using a liquid reagent, it is applicable for use in veterinary clinics.


Assuntos
Doenças do Gato , Doenças do Cão , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Gatos , Animais , Humanos , Cães , Febre Grave com Síndrome de Trombocitopenia/veterinária , Indicadores e Reagentes , RNA Viral/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/veterinária , Phlebovirus/genética
17.
Int Heart J ; 64(1): 95-99, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36682771

RESUMO

Currently available anti-cytomegalovirus (CMV) agents are sometimes poorly tolerated, owing to their side effects. Letermovir is a novel anti-CMV drug that is only approved for CMV prophylaxis in hematopoietic stem cell transplant recipients, with fewer side effects. We report the case of a heart transplant recipient with UL97 mutation (L595F) ganciclovir-resistant cytomegalovirus colitis who was successfully treated with off-label use of letermovir. In treating CMV infection or disease with letermovir, a transient rise or lag in the clearance of CMV-DNA polymerase chain reaction levels has been observed. Our case suggests that CMV-pp65 antigenemia can be an additional marker of treatment efficacy.


Assuntos
Infecções por Citomegalovirus , Transplante de Coração , Humanos , Ganciclovir/uso terapêutico , Ganciclovir/farmacologia , Antivirais/uso terapêutico , Antivirais/farmacologia , Viremia/tratamento farmacológico , Viremia/etiologia , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/prevenção & controle , Citomegalovirus/genética , Mutação , Transplante de Coração/efeitos adversos
18.
iScience ; 26(2): 105969, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687316

RESUMO

The immune responses to SARS-CoV-2 variants in COVID-19 cases are influenced by various factors including pre-existing immunity via vaccination and prior infection. Elucidating the drivers for upgrading neutralizing activity to SARS-CoV-2 in COVID-19 cases with pre-existing immunity will aid in improving COVID-19 booster vaccines with enhanced cross-protection against antigenically distinct variants, including the Omicron sub-lineage BA.4/5. This study revealed that the magnitude and breadth of neutralization activity to SARS-CoV-2 variants after breakthrough infections are determined primarily by upper respiratory viral load and vaccination-infection time interval. Extensive neutralizing breadth, covering even the most antigenically distant BA.4/5, was observed in cases with higher viral load and longer time intervals. Antigenic cartography depicted a critical role of the time interval in expanding the breadth of neutralization to SARS-CoV-2 variants. Our results illustrate the importance of dosing interval optimization as well as antigen design in developing variant-proof booster vaccines.

20.
Front Microbiol ; 14: 1333946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249467

RESUMO

Introduction: Severe fever with thrombocytopenia syndrome (SFTS) is a fatal viral disease characterized by high fever, thrombocytopenia, leukopenia, and multi-organ haemorrhage. Disruption of the humoral immune response and decreased lymphocyte numbers are thought to contribute to the disease severity. These findings have been obtained through the analysis of peripheral blood leukocytes in human patients, whereas analysis of lymph nodes has been limited. Thus, in this study, we characterized the germinal centre response and apoptosis in the lymph nodes of cats with fatal SFTS, because SFTS in cats well mimics the pathology of human SFTS. Methods: Lymph node tissue sections collected during necropsy from seven fatal SFTS patients and five non-SFTS cases were used for histopathological analysis. Additionally, lymph node tissue sections collected from cats with experimental infection of SFTS virus (SFTSV) were also analysed. Results: In the lymphoid follicles of cats with SFTS, a drastic decrease in Bcl6- and Ki67-positive germinal centre B cells was observed. Together, the number of T cells in the follicles was also decreased in SFTS cases. In the paracortex, a marked increase in cleaved-caspase3 positivity was observed in T cells. These changes were independent of the number of local SFTS virus-positive cell. Furthermore, the analysis of cats with experimental SFTSV infection revealed that the intrafollicular Bcl6- and CD3-positive cell numbers in cats with low anti-SFTSV antibody production were significantly lower than those in cats with high anti-SFTSV antibody production. Discussion: These results suggest that dysfunction of the humoral response in severe SFTS was caused by the loss of germinal centre formation and massive apoptosis of T cells in the lymph nodes due to systemically circulating viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA