Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Breed Sci ; 73(2): 193-203, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37404343

RESUMO

A unique genetic variation with respect to blast resistance was clarified in 201 rice accessions from Vietnam. These accessions were classified into three clusters-A, B1, and B2-based on their reactions to 26 standard differential blast isolates selected in Vietnam. Cluster A was the dominant cultivar group in Vietnam and the most susceptible of the three clusters. Cluster B1 was the smallest group and the most resistant. Cluster B2 was the second-most dominant group and of intermediate resistance between clusters A and B1. The percentages of accessions comprising each cluster varied by region and area. Accessions in cluster A were distributed widely throughout Vietnam and had the highest frequencies in both the Central and North regions. Accessions in cluster B2 were found with highest frequencies in the mountainous and intermediate areas of the North region. Accessions in cluster B1 were found with highest frequencies in the Central region and Red River Delta area (North region). These results suggest that rice accessions in Vietnam were basically susceptible (cluster A) or of intermediate resistance (cluster B2), and that high-resistance cultivars were mainly distributed in the low altitude areas, such as the Red River Delta area and Central region.

2.
Plants (Basel) ; 12(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36840212

RESUMO

In Kenya's rice-growing areas, Basmati varieties have been produced in monoculture since the late 1980s. This has resulted in the breakdown of the resistance (R) gene-mediated response of the local Basmati varieties to blast disease caused by Pyricularia oryzae. To improve blast resistance in Kenyan Basmati varieties, continuous identification of R genes and suitable breeding materials for Basmati are necessary. Longistaminata chromosome segment introgression lines (LCSILs) with the Kernel Basmati genetic background, developed using a rice line called potential low-input adaptable-1 (pLIA-1) derived from a cross between Taichung 65 (T65) (a rice variety in the Japonica Group) and O. longistaminata, are expected to contain useful blast R genes derived from O. longistaminata or T65. In this study, we investigated the genetic variation of blast R genes in LCSILs and their parents by using a new international differential system for designating blast races based on the gene-for-gene theory and molecular characterization using single nucleotide polymorphism (SNP) markers. LCSILs and their parents were classified into three groups-A, B1, and B2-based on reaction patterns to the standard differential blast isolates (SDBIs). Group A, including pLIA-1, showed the highest resistance in all groups, followed by groups B1 and B2. Kernel Basmati in group B1 was considered to possess Pik-p or Pi7(t), Pi19(t), and other unknown R genes. In addition to these R genes, LCSIL 6, 12, 27, 28, and 40, in group A, were determined to possess one of Pish, Piz-t, or both genes that confer resistance to the Kenyan blast races. These lines can be used for efficiently pyramiding blast R genes in the local Basmati varieties.

3.
Rice (N Y) ; 14(1): 18, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33569693

RESUMO

BACKGROUND: The harvest index (HI) is a measure of the biological success of forming harvestable products. However, our understanding of the genetic basis of HI in rice (Oryza sativa L.) is limited, because it is a complex trait consisting of various yield-related traits and physiological attributes. YTH183 is a high-yielding line with large panicles and high HI derived from a cross between the Indica Group variety IR 64 and the NPT line IR 69093-41-2-3-2 (YP5). RESULTS: Here, we detected two novel QTLs for HI, designated qHI5.1 on chromosome 5 and qHI8.1 on chromosome 8, by using 155 recombinant inbred lines (RILs) derived from the cross between IR 64 and YTH183. The YTH183 allele at qHI5.1 contributed to a wide grain, resulting in heavy grain weight and panicle weight, and was consistently effective under the different environmental conditions of subtropical (Ishigaki) and temperate (Tsukuba) regions. Genetic polymorphism revealed that qHI5.1 was identical to GSE5/GW5, which is known to control the grain weight. On the other hand, although qHI8.1 functioned additively with qHI5.1 for higher HI, it did not show any significant effect on grain or panicle weight. In addition, its effects on HI were shown only in the first seasons at Ishigaki but not at Tsukuba or in the second season at Ishigaki. CONCLUSION: Our results indicate that qHI5.1 controls the grain size, regardless of whether environmental conditions are of subtropical or temperate regions, while qHI8.1 might be involved in controlling the physiological processes of source ability or the translocation of photosynthesis products from vegetative organs to grains depending on environmental conditions during the maturing stage. These QTLs will be useful genetic resources for future breeding programs to break through the ceiling of maximum yield in Indica Group varieties.

4.
Plant Dis ; 105(3): 675-683, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32787657

RESUMO

A total of 201 isolates of Pyricularia oryzae (the causal agent of rice blast) were collected from three rice ecosystems (upland, lowland, and swampy) in five regions of Indonesia (West Java, Lampung, South Sumatra, Kalimantan, and Bali). Their pathogenicities were characterized based on the patterns of reaction of 25 differential varieties (DVs) and the susceptible control Lijiangxintuanheigu (LTH), which was susceptible to all blast isolates. A high proportion of isolates (>80.0%) were virulent to DVs for resistance genes Pib, Pit, Pia, Pik-s, and Pi12(t), and a low proportion of isolates (<12.9%) were virulent to DVs for Pik-m, Pi1, Pik-h, Pik, Pik-p, and Pi7(t). Virulence to the other DVs for Pish, Pii, Pi3, Pi5(t), Pi9(t), Piz, Piz-5, Piz-t, Pita-2 (two lines), Pita (two lines), Pi19(t), and Pi20(t) showed intermediate frequencies from 20.0 to 80.0%. These isolates were classified into three cluster groups, Ia, Ib, and II, and the frequencies of cluster groups varied between the three ecosystems and the five regions. The frequencies of cluster groups varied between ecosystems and regions, and races varied according to the ecosystems. A total of 27 standard differential blast isolates (SDBIs) were selected from the 201 isolates collected. The set of 25 DVs and these 27 SDBIs will be used as a new differential system for analysis of the pathogenicity of blast isolates and analysis of resistance genes in rice cultivars, which will contribute to building a durable protection system against blast disease in Indonesia.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Ecossistema , Indonésia , Magnaporthe/genética , Doenças das Plantas , Virulência/genética
5.
Front Plant Sci ; 11: 1135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849696

RESUMO

Due to global population expansion and climate change impacts, the development of a stable yielding variety that adapts well to unfavorable conditions for rice cultivation, can contribute to sustainable and stable production in rice (Oryza sativa L.). Understanding genetic differentiations to ecotypes for rice cultivations, such as upland, rainfed lowland, and irrigated lowland, is very important to develop the breeding materials for adapting to each environmental condition. The upland landrace variety basically has low tiller/panicle numbers and a large panicle, and the plant architecture is different from that of the lowland variety. The tiller and panicle numbers have been considered as one of the most difficult traits for genetic changes artificially in rice breeding. A low tiller recessive gene ltn2 originated from a New Plant Type variety, IR 65600-87-2-23, harboring segments from an upland variety, Ketan Lumbu (Tropical Japonica Group), was found on chromosome 7, and the other QTLs for culm length, culm weight, panicle length, panicle weight, seed fertility, harvest index, and soil surface rooting were also detected in the same chromosome region. These low tiller genes and the other QTLs were estimated to play an important role in developing the architecture for upland rice. Some QTLs for root growth angle, DRO3 and qSFR7, were also found in the same chromosome region from upland varieties categorized into the Tropical Japonica Group, and the QTLs may also be relevant to upland adaptation together with other traits. Previous studies using high throughput re-sequencing (whole genome variation data) of a large batch of rice accessions could identify the ecotype differentiated genomic regions (EDRs) and Ecotype differentiated genes (EDGs) such as Os07g0449700, a type response regulator, which is critical in upland adaptation in the same region of chromosome 7. Two selective loci, E3735 and E4208, for upland and lowland differentiation, and their corresponding genes Os07g0260000 and Os07g0546500 were also detected on chromosome 7 by drought-responding EST-SSRs. These findings indicate that the region on chromosome 7 is highly possible to related to the plant shoot and root architecture in the upland rice variety that has an important role and differentiates between upland and lowland ecotypes.

6.
Breed Sci ; 70(3): 303-312, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32714052

RESUMO

Rice (Oryza sativa L.) has been considered one of the most important crops in Ethiopia. Landraces and improved accessions in Ethiopia were characterized on the basis of polymorphism data for SSR markers, and classified into two groups: I and II. Cluster I was further divided into two sub-clusters, Ia and Ib. Cluster Ia corresponded to Japonica-like type, Cluster Ib to Japonica type, and Cluster II to Indica type with some Indica-like type. Many landraces and improved varieties belonged to Cluster Ia. Superior landraces were included in Cluster Ib. Further categorization based on blast resistance demonstrated three groups: Clusters A, B1, and B2. Cluster A comprised accessions with relatively high resistance, whereas Clusters B1 and B2 included susceptible accessions. Most of the improved varieties were found in Cluster A. Superior landraces, X-Jigna classified into Ib or DNA type tended to be susceptible in Cluster B2 for blast resistance. These results demonstrated that traditional landraces preferred by farmers should be improved for disease resistance using blast-resistant varieties. In order to avoid hybrid sterility occurring in cross-hybridizing breeding between Indica and Japonica types, desirable parental accessions can be chosen within the same DNA cluster. The clustering information among accessions may be useful in breeding schemes for selection of counterparts in cross-breeding programs.

7.
Plant Dis ; 104(2): 381-387, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31841356

RESUMO

A total of 239 isolates of blast (Pyricularia oryzae Cavara) collected from northern and central Vietnam showed a wide variation in pathogenicity based on the reaction patterns to 25 differential varieties (DVs) harboring 23 resistance genes and susceptible cultivar Lijiangxintuanheigu (LTH). The frequencies of isolates virulent toward DVs for Pish, Pik-m, Pi1, Pik-h, Pik, Pik-p, Pi7(t), Pi9(t), Piz-5, Pita-2, and Pita were low, but they were high for DVs for Pib, Pit, Pia, Pii, Pi3, Pi5(t), Pik-s, Piz, Piz-t, Pi12(t), Pi19(t), and Pi20(t). Isolates were classified into three cluster groups Ia, Ib, and II based on reaction patterns to DVs and LTH. The frequencies of isolates virulent toward 11 DVs for Pik-m, Pi1, Pik-h, Pik, Pik-p, Pi7(t), Pi9(t), Piz, Piz-5, Pita-2, and Pita in cluster II and DV for Piz-t were higher and lower than those of Ia and Ib, respectively. The frequencies to DVs for Pii, Pi3, Pi5(t), and Piz-t were different between clusters Ia and Ib. Clusters Ia and Ib were distributed with similar frequencies in the northeast, north central, and south central coast regions, but the frequencies among three cluster groups in the Red River Delta and northwest regions were different. This means that the blast races in these two regions were different from the others. Overall, the blast isolates were categorized into 153 races. Among them, 26 were selected as a set of standard differential blast isolates for characterizing 23 resistance genes and developing a differential system in Vietnam.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Doenças das Plantas , Vietnã
8.
Breed Sci ; 70(5): 576-585, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33603554

RESUMO

Genetic variations of 179 rice (Oryza sativa L.) accessions from Cambodia were clarified based on the analyses for heading date, chromosome components, and blast resistance. The dominant accessions were found in three regions; early heading in North East (NE), medium in Central (CT), and late in South East (SE) along the Mekong River in the investigation at Ishigaki, Japan. In contrast, wide variations were observed in two regions, South West (SW) and North West (NW) located around Tonle Sap Lake. Polymorphism data of SSR markers showed that accessions were classified into Japonica Group (cluster Ib), and Indica Groups (IIa and IIb). In the NW and SW, the accessions of all three clusters were found, but these accessions in NE, CT, and SE, were limited to one or two clusters. Accessions were classified again into two clusters, A1 as having high resistance and A2 as having moderate resistance. Remarkable differences of these frequencies of clusters, A1 and A2, were found in the SE, SW, and NW, and similar with these of the whole accessions were in NE and CT. Rice accessions varied among the five regions, and there was a dramatic difference between the regions along Mekong River and the regions around Tonle Sap Lake.

9.
Plant Dis ; 103(12): 3181-3188, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31638864

RESUMO

A total of 99 isolates of rice blast (Pyricularia oryzae Cavara) were collected from 2010 to 2015 from four regions in Kenya: Kirinyaga County and Embu County, Kisumu County, Tana River County, and Mombasa County. The pathogenicities of these isolates were clarified based on the reaction patterns of Lijiangxintuanheigu and differential varieties (DVs) targeting 23 resistance genes. The frequency of virulent isolates was high for DVs for Pib, Pia, Pii, Pi3, Pi5(t), Pik-s, Pik-m, Pi1, Pik-h, Pik, Pik-p, Pi7(t), Pi19(t), and Pi20(t); low for DVs for Pish, Pi9(t), Piz-5, and Piz-t; and intermediate for the remaining DVs for Pit, Piz, Pita-2, Pita, and Pi12(t). These blast isolates were classified into three cluster groups: Ia, Ib, and II. The frequencies of virulent isolates to DVs for Pit, Pii, Pik-m, Pi1, Pik-h, Pik, Pik-p, Pi7(t), Piz, and Pi12(t) differed markedly between clusters I and II, and those of DVs for Pib, Pit, Pia, Pi3, Pita-2, Pita, and Pi20(t) differed between Ia and Ib. The frequencies of cluster groups in the four geographical regions were different. A total of 62 races were found, with 19 blast isolates categorized into one race (U63-i7-k177-z00-ta003), whereas the other races included only some isolates in each.


Assuntos
Magnaporthe , Oryza , Quênia , Magnaporthe/classificação , Magnaporthe/patogenicidade , Oryza/microbiologia , Virulência
10.
Rice (N Y) ; 12(1): 73, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31535306

RESUMO

BACKGROUND: A cytoplasm of CW-type cytoplasmic male sterile (CMS) line is derived from Oryza rufipogon strain W1 and fertility is restored by a single nuclear gene, Rf17. We have previously reported that CW-CMS were effective for breeding CMS lines of Indica Group rice cultivars, IR 24 and IR 64. The applicability of this CW-CMS/Rf17 system to produce other elite Indica Group rice cultivars with CMS was explored. FINDINGS: Out of seven elite Indica Group rice cultivars, complete CMS lines were obtained for six cultivars: NSIC Rc 160, NSIC Rc 240, Ciherang, BRRI dhan 29, NERICA-L-19, and Pusa Basmati. The fertility of these six lines was restored when Rf17 was present. A CMS line was not obtained for the cultivar Samba Mahsuri. CONCLUSIONS: The CW-CMS/Rf17 system will be useful to produce CMS lines and restorer lines of various elite Indica Group rice cultivars.

11.
Breed Sci ; 69(2): 272-278, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31481836

RESUMO

We assessed genetic variation in rice germplasm in northern Laos and Vientiane province from polymorphism data of SSR markers. We classified 314 accessions into three clusters; Ia (corresponding to the lowland Japonica Group), Ib (upland Japonica Group) and II (Indica Group). The accessions of cluster Ib grew mainly in mountainous fields, and those of cluster II grew commonly in basins and along rivers. The few accessions of cluster Ia grew in only three provinces: Houaphanh, Xiangkhouang and Vientiane. Lowland cultivars in cluster II were predominant in Vientiane. Variations in heading date under short-day conditions in 2014 and long-day conditions in 2015 indicate that many accessions were sensitive to the photoperiod on account of complex genetic mechanisms underlying both photoperiod sensitivity and basic vegetative growth. A total of 219 among whole accessions were classified into 6 groups: E1-3 and L1-3. E2 and E3 were dominant in clusters Ib and II; E1 and L1-3 were minor groups. These results demonstrate characteristic distributions of the Indica and Japonica Group's germplasms in northern Laos and their genetic variation in heading date.

12.
Breed Sci ; 69(1): 94-103, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31086487

RESUMO

To understand variation in the root development traits (total root length (TRL), maximum root length (MRL) and root number) of 18 New Rice for Africa (NERICA) varieties, seedlings were hydroponically grown under deficient and sufficient concentrations of two forms of nitrogen, NH4 + and NO3 -. The donor African rice variety, 'CG14' (Oryza glaberrima Steud.), showed greater TRL and MRL than three background Asian rice varieties (Oryza sativa L.). Wide distribution was observed in all traits of the 18 NERICAs. The 18 NERICAs and parental varieties were classified into three cluster groups by cluster analysis. Cluster Ia included only 'CG14'. Comparative analysis characterized cluster Ib (including 'NERICA7') as an active root elongation group, and cluster II (including 'WAB56-104') as an active primordia development group. QTL analysis of F2 plants developed from a cross between 'WAB56-104' and 'NERICA7' detected two putative quantitative trait loci (QTLs) for root elongation on chromosome 1. Of these, a major QTL, designated as qRL1.4-NERICA7, was an NH4 +-responsive QTL, which was narrowed down to a 0.7-Mbp region through progeny testing using F7 lines. qRL1.4-NERICA7 should help us understand genetic control in NERICAs, and improve root elongation in rice breeding programs.

13.
Breed Sci ; 69(4): 672-679, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31988632

RESUMO

A total of 47 rice accessions collected from Kenya were investigated the genetic variations and classified into two cluster groups, A and B, by polymorphism data of 65 simple sequence repeat (SSR) markers. Clusters A and B corresponded to Japonica and Indica Groups, respectively. The number of Japonica Group accessions was limited in comparison with those of the Indica Group. Based on their patterns of reaction to standard differential blast isolates (SDBIs), these accessions and 57 control cultivars including differential varieties and several accessions harboring partial resistance genes were classified again into three cluster groups: Ia (high resistance), Ib (intermediate resistance) and II (susceptible). The rice accessions from Kenya were classified only into groups Ia and Ib. The accessions from Kenya were finally classified into three categories, A-Ia, B-Ia and B-Ib, based on the two classifications of polymorphism of SSR markers and resistance. The Indica Group accessions had wider genetic variation for blast resistance than did the Japonica Group accessions. The three leading cultivars (Basmati 217, Basmati 370 and ITA 310) categorized into Cluster group Ia were susceptible to some SDBIs from Kenya. The genetic variation for blast resistance in Kenya was demonstrated as the first report using SDBIs.

14.
Proc Natl Acad Sci U S A ; 115(9): E1955-E1962, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29444864

RESUMO

Understanding the genetic basis of reproductive barriers between species has been a central issue in evolutionary biology. The S1 locus in rice causes hybrid sterility and is a major reproductive barrier between two rice species, Oryza sativa and Oryza glaberrima The O. glaberrima-derived allele (denoted S1g) on the S1 locus causes preferential abortion of gametes with its allelic alternative (denoted S1s) in S1g/S1s heterozygotes. Here, we used mutagenesis and screening of fertile hybrid plants to isolate a mutant with an allele, S1mut, which does not confer sterility in the S1mut/S1g and S1mut/S1s hybrids. We found that the causal mutation of the S1mut allele was a deletion in the peptidase-coding gene (denoted "SSP") in the S1 locus of O. glaberrima No orthologous genes of SSP were found in the O. sativa genome. Transformation experiments indicated that the introduction of SSP in carriers of the S1s allele did not induce sterility. In S1mut/S1s heterozygotes, the insertion of SSP led to sterility, suggesting that SSP complemented the loss of the functional phenotype of the mutant and that multiple factors are involved in the phenomenon. The polymorphisms caused by the lineage-specific acquisition or loss of the SSP gene were implicated in the generation of hybrid sterility. Our results demonstrated that artificial disruption of a single gene for the reproductive barrier creates a "neutral" allele, which facilitates interspecific hybridization for breeding programs.


Assuntos
Cruzamentos Genéticos , Genes de Plantas , Oryza/genética , Infertilidade das Plantas/genética , Alelos , Mapeamento Cromossômico , Cromossomos/ultraestrutura , Deleção de Genes , Heterozigoto , Hibridização Genética , Mutagênese , Mutação , Fenótipo , Pólen/genética , Polimorfismo Genético , Domínios Proteicos , Reprodução/genética
15.
Breed Sci ; 67(3): 181-190, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28744171

RESUMO

We developed a new method of using seedling trays to evaluate root angle distribution in rice (Oryza sativa. L), and found a wide genetic variation among cultivars. The seedling tray method can be used to evaluate in detail the growth angles of rice crown roots at the seedling stage by allocating nine scores (10° to 90°). Unlike basket methods, it can handle large plant populations over a short growth period (only 14 days). By using the method, we characterized the root angle distributions of 97 accessions into two cluster groups: A and B. The numbers of accessions in group A were limited, and these were categorized as shallow rooting types including soil-surface root. Group B included from shallow to deep rooting types; both included Indica and Japonica Group cultivars, lowland and upland cultivars, and landraces and improved types. No relationship between variation in root vertical angle and total root number was found. The variation in root angle distribution was not related to differentiation between the Japonica and Indica Groups, among ecosystems used for rice cultivation, or among degrees of genetic improvement. The new evaluation method and associated information on genetic variation of rice accessions will be useful in root architecture breeding of rice.

16.
J Exp Bot ; 68(11): 2693-2702, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28582550

RESUMO

Total spikelet number per panicle (TSN) is one of the determinants of grain productivity in rice (Oryza sativa L.). In this study, we attempted to detect quantitative trait loci (QTLs) for TSN in the introgression lines with high TSN, derived from the cross of Indica Group variety IR 64 with new plant type lines. Two QTLs were detected on the long arm of chromosome 12: qTSN12.1 in the BC4F2 population of YTH63/IR 64 and qTSN12.2 in the BC4F3 population of YTH83/IR 64. TSN of the main tiller was significantly higher in near-isogenic lines (NILs) for qTSN12.1 (IR 64-NIL1; 188.6) and for qTSN12.2 (IR 64-NIL12; 199.4) than in IR 64 (141.2), owing to a significant increase in both primary and secondary branch numbers. These results suggest the critical function of these QTLs in the promotion of rachis branching at the panicle formation stage. Fine mapping of qTSN12.2 revealed six candidate genes in a 92-kb region of the Nipponbare reference genome sequence between flanking markers RM28746 and RM28753. Detailed phenotyping of agronomic traits of IR 64-NIL12 carrying qTSN12.2 showed drastic changes in plant architecture: this line had lower panicle number, longer culm, and longer and wider leaves compared with IR 64. Percentage of fertility and 1000-grain weight tended to be greater, and grain yield per square meter was also greater in IR 64-NIL12 than in IR 64. The newly identified QTLs will be useful for genetic improvement of the yield potential of Indica Group varieties. The markers tightly linked to qTSN12.2 are available for marker-assisted breeding.


Assuntos
Grão Comestível/genética , Oryza/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Cromossomos de Plantas , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas
17.
Breed Sci ; 67(5): 493-499, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29398943

RESUMO

Genetic variation in blast resistance was clarified in 334 Bangladesh rice accessions from 4 major ecotypes (Aus, Aman, Boro and Jhum). Cluster analysis of polymorphism data of 74 SSR markers separated these accessions into cluster I (corresponding to the Japonica Group) and cluster II (corresponding to the Indica Group). Cluster II accessions were represented with high frequency in all ecotypes. Cluster II was further subdivided into subclusters IIa and IIb. Subcluster IIa accessions were represented with high frequency in only Aus and Jhum ecotypes. Cluster I accessions were more frequent in the Aman ecotype than in other ecotypes. Distinct variations in resistance were found, and accessions were classified into 4 groups (A1, A2, B1 and B2) based on their reactions to standard differential blast isolates. The most susceptible group was A2 (which included susceptible variety Lijiangxintuanheigu, most of the differential varieties, and a few Bangladesh accessions), followed in order by A1, B2 and B1 (the most resistant). Accessions from 4 ecotypes fell with different frequencies into each of these resistance groups. These results demonstrated that Japonica Group accessions were found mainly in Aman, and Indica Group accessions were distributed across all ecotypes. Susceptible accessions were limited in Aus and Aman.

18.
Breed Sci ; 67(5): 500-508, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29398944

RESUMO

The genetic variation in resistance to blast (Pyricularia oryzae Cavara) in 195 rice accessions comprising 3 species of the AA genome complex (Asian rice [Oryza sativa L.], African rice [Oryza glaberrima Steud.] and wild rice [Oryza barthii]) was investigated based on their patterns of reaction to standard differential blast isolates (SDBIs) and SSR marker polymorphism data. Cluster analysis of the polymorphism data of 61 SSR markers identified 3 major clusters: cluster A (mainly Japonica Group or upland accessions), cluster B (mainly Indica Group or lowland accessions) and cluster C (O. glaberrima and O. barthii). The accessions were classified again into 3 resistance groups based on reactions to SDBIs: group Ia (susceptible), group Ib (middle resistance) and group II (high resistance). Group Ia included only a few differential varieties, susceptible controls and the Japonica Group cultivar Nipponbare. Accessions in clusters A and B included all 3 resistance groups and showed a wide variation in blast resistance, but cluster C contained only group Ib. These results demonstrated that variations in Asian rice (O. sativa) accessions in West Africa were skewed toward high resistance and that variations in O. glaberrima and O. barthii were limited and lower than the Asian rice accessions.

19.
Breed Sci ; 66(5): 762-767, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28163592

RESUMO

The genetic diversity of 175 rice accessions from Myanmar, including landraces and improved types from upland and lowland ecosystems in five different areas-Western (hilly), Northern (mountainous), North and South-eastern (plateau), and Southern (plain)-was evaluated on the basis of polymorphism data for 65 DNA markers and phenol reactions. On the basis of the DNA polymorphism data, high genetic diversity was confirmed to conserve in the accessions from each ecosystem and area. And the accessions were classified into two cluster groups I and II, which corresponded to Indica Group and Japonica Group, respectively. Cluster group I accessions were distributed mainly in upland ecosystems; group II were distributed in lowland in the Southern area, and the distributions of dominant groups differed among areas. Rice germplasm in Myanmar has maintained high genetic diversity among ecosystems and areas. This information will be used for advanced studies in germplasm and rice breeding in Myanmar.

20.
Breed Sci ; 66(5): 790-796, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28163595

RESUMO

We characterized a rice introgression line, YTH34, harboring a chromosome segment from a New Plant Type (NPT) cultivar, IR65600-87-2-2-3, in the genetic background of an Indica Group elite rice cultivar, IR 64, under upland and irrigated lowland conditions in Japan. The number of panicles (as an indicator of tiller number) and number of spikelets per panicle of YTH34 were lower than those of IR 64 under irrigated lowland conditions, but both of those as well as culm length, panicle length, seed fertility, panicle weight, whole plant weight, and harvest index were dramatically reduced under upland conditions. And the low tiller of YTH34 was confirmed to start after the maximum tiller stage. In particular, the decrease of panicle number was remarkable in upland, so we tried to identify the chromosome location of the relevant gene. Through segregation and linkage analyses using F3 family lines derived from a cross between IR 64 and YTH34, and SSR markers, we found that low tiller number was controlled by a single recessive gene, ltn2, and mapped with the distance of 2.1 cM from SSR marker RM21950, in an introgressed segment on chromosome 7. YTH34 harboring ltn2 and the genetic information for DNA markers linked will be useful for genetic modification of plant architectures of Indica Group rice cultivar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA