Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(4): 041003, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37566859

RESUMO

We report on the first search for nuclear recoils from dark matter in the form of weakly interacting massive particles (WIMPs) with the XENONnT experiment, which is based on a two-phase time projection chamber with a sensitive liquid xenon mass of 5.9 ton. During the (1.09±0.03) ton yr exposure used for this search, the intrinsic ^{85}Kr and ^{222}Rn concentrations in the liquid target are reduced to unprecedentedly low levels, giving an electronic recoil background rate of (15.8±1.3) events/ton yr keV in the region of interest. A blind analysis of nuclear recoil events with energies between 3.3 and 60.5 keV finds no significant excess. This leads to a minimum upper limit on the spin-independent WIMP-nucleon cross section of 2.58×10^{-47} cm^{2} for a WIMP mass of 28 GeV/c^{2} at 90% confidence level. Limits for spin-dependent interactions are also provided. Both the limit and the sensitivity for the full range of WIMP masses analyzed here improve on previous results obtained with the XENON1T experiment for the same exposure.

2.
Phys Rev Lett ; 130(26): 261002, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37450817

RESUMO

Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from multiply interacting massive particles (MIMPs). Their unique track signature allows a targeted analysis with only 0.05 expected background events from muons. Following unblinding, we observe no signal candidate events. This Letter places strong constraints on spin-independent interactions of dark matter particles with a mass between 1×10^{12} and 2×10^{17} GeV/c^{2}. In addition, we present the first exclusion limits on spin-dependent MIMP-neutron and MIMP-proton cross sections for dark matter particles with masses close to the Planck scale.

3.
Phys Rev Lett ; 129(16): 161805, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306777

RESUMO

We report on a blinded analysis of low-energy electronic recoil data from the first science run of the XENONnT dark matter experiment. Novel subsystems and the increased 5.9 ton liquid xenon target reduced the background in the (1, 30) keV search region to (15.8±1.3) events/(ton×year×keV), the lowest ever achieved in a dark matter detector and ∼5 times lower than in XENON1T. With an exposure of 1.16 ton-years, we observe no excess above background and set stringent new limits on solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter.

4.
Eur Phys J C Part Fields ; 82(7): 599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821975

RESUMO

The selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and 222 Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove or mitigate surface contamination of detector materials are described. Screening results, used as inputs for a XENONnT Monte Carlo simulation, predict a reduction of materials background ( ∼ 17%) with respect to its predecessor XENON1T. Through radon emanation measurements, the expected 222 Rn activity concentration in XENONnT is determined to be 4.2 ( - 0.7 + 0.5 )  µ Bq/kg, a factor three lower with respect to XENON1T. This radon concentration will be further suppressed by means of the novel radon distillation system.

5.
Eur Phys J C Part Fields ; 81(4): 337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720714

RESUMO

The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the 222 Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a 222 Rn activity concentration of 10 µ Bq / kg in 3.2 t of xenon. The knowledge of the distribution of the 222 Rn sources allowed us to selectively eliminate problematic components in the course of the experiment. The predictions from the emanation measurements were compared to data of the 222 Rn activity concentration in XENON1T. The final 222 Rn activity concentration of ( 4.5 ± 0.1 ) µ Bq / kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment.

6.
Phys Rev Lett ; 126(9): 091301, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750173

RESUMO

We report on a search for nuclear recoil signals from solar ^{8}B neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 to 1.6 keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant ^{8}B neutrinolike excess is found in an exposure of 0.6 t×y. For the first time, we use the nondetection of solar neutrinos to constrain the light yield from 1-2 keV nuclear recoils in liquid xenon, as well as nonstandard neutrino-quark interactions. Finally, we improve upon world-leading constraints on dark matter-nucleus interactions for dark matter masses between 3 and 11 GeV c^{-2} by as much as an order of magnitude.

7.
Phys Rev Lett ; 122(14): 141301, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31050482

RESUMO

We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3×10^{-42} cm^{2} at 30 GeV/c^{2} and 90% confidence level. The results are compared with those from collider searches and used to exclude new parameter space in an isoscalar theory with an axial-vector mediator.

8.
Phys Rev Lett ; 122(7): 071301, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848617

RESUMO

We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions from 1 t yr of exposure with the XENON1T experiment. This interaction is generated when the WIMP couples to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators, these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the nucleus. Using the signal model of this new WIMP-pion channel, no significant excess is found, leading to an upper limit cross section of 6.4×10^{-46} cm^{2} (90% confidence level) at 30 GeV/c^{2} WIMP mass.

9.
Phys Rev Lett ; 123(25): 251801, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31922764

RESUMO

We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22±3) tonne day. Above ∼0.4 keV_{ee}, we observe <1 event/(tonne day keV_{ee}), which is more than 1000 times lower than in similar searches with other detectors. Despite observing a higher rate at lower energies, no DM or CEvNS detection may be claimed because we cannot model all of our backgrounds. We thus exclude new regions in the parameter spaces for DM-nucleus scattering for DM masses m_{χ} within 3-6 GeV/c^{2}, DM-electron scattering for m_{χ}>30 MeV/c^{2}, and absorption of dark photons and axionlike particles for m_{χ} within 0.186-1 keV/c^{2}.

10.
Phys Rev Lett ; 123(24): 241803, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922867

RESUMO

Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above ∼5 GeV/c^{2}, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a bremsstrahlung photon. In this Letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c^{2} by looking for electronic recoils induced by the Migdal effect and bremsstrahlung using data from the XENON1T experiment. Besides the approach of detecting both scintillation and ionization signals, we exploit an approach that uses ionization signals only, which allows for a lower detection threshold. This analysis significantly enhances the sensitivity of XENON1T to light dark matter previously beyond its reach.

11.
Phys Rev Lett ; 121(11): 111302, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265108

RESUMO

We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30±0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4,10.6] keV_{ee} ([4.9,40.9] keV_{nr}), exhibits an ultralow electron recoil background rate of [82_{-3}^{+5}(syst)±3(stat)] events/(ton yr keV_{ee}). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c^{2}, with a minimum of 4.1×10^{-47} cm^{2} at 30 GeV/c^{2} and a 90% confidence level.

12.
Phys Rev Lett ; 119(18): 181301, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219593

RESUMO

We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042±12)-kg fiducial mass and in the [5,40] keV_{nr} energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93±0.25)×10^{-4} events/(kg×day×keV_{ee}), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c^{2}, with a minimum of 7.7×10^{-47} cm^{2} for 35-GeV/c^{2} WIMPs at 90% C.L.

13.
Phys Rev Lett ; 118(10): 101101, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28339273

RESUMO

We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 yr, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of 431_{-14}^{+16} day in the low energy region of (2.0-5.8) keV in the single scatter event sample, with a global significance of 1.9σ; however, no other more significant modulation is observed. The significance of an annual modulation signature drops from 2.8σ, from a previous analysis of a subset of this data, to 1.8σ with all data combined. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at 5.7σ.

15.
Phys Rev Lett ; 115(9): 091302, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26371638

RESUMO

We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an unbinned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1σ for all periods, suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8σ, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of weakly interacting massive particles to electrons is excluded at 4.8σ.

16.
Phys Rev Lett ; 114(12): 125003, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25860750

RESUMO

We report here, in brief, some results of the observation and analysis of sporadic variations of atmospheric thermal neutron flux during thunderstorms. The results obtained with unshielded scintillation neutron detectors show a prominent flux decrease correlated with meteorological precipitations after a long dry period. No observations of neutron production during thunderstorms were reported during the three-year period of data recording.

17.
Phys Rev Lett ; 111(2): 021301, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23889382

RESUMO

We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days×34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with 129Xe and 131Xe nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV/c², with a minimum cross section of 3.5×10(-40) cm² at a WIMP mass of 45 GeV/c², at 90% confidence level.

18.
Phys Rev Lett ; 109(18): 181301, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215267

RESUMO

We report on a search for particle dark matter with the XENON100 experiment, operated at the Laboratori Nazionali del Gran Sasso for 13 months during 2011 and 2012. XENON100 features an ultralow electromagnetic background of (5.3 ± 0.6) × 10(-3) events/(keV(ee) × kg × day) in the energy region of interest. A blind analysis of 224.6 live days × 34 kg exposure has yielded no evidence for dark matter interactions. The two candidate events observed in the predefined nuclear recoil energy range of 6.6-30.5 keV(nr) are consistent with the background expectation of (1.0 ± 0.2) events. A profile likelihood analysis using a 6.6-43.3 keV(nr) energy range sets the most stringent limit on the spin-independent elastic weakly interacting massive particle-nucleon scattering cross section for weakly interacting massive particle masses above 8 GeV/c(2), with a minimum of 2 × 10(-45) cm(2) at 55 GeV/c(2) and 90% confidence level.

19.
Phys Rev Lett ; 109(7): 070801, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-23006352

RESUMO

We report the measurement of the time of flight of ∼17 GeV ν(µ) on the CNGS baseline (732 km) with the Large Volume Detector (LVD) at the Gran Sasso Laboratory. The CERN-SPS accelerator has been operated from May 10th to May 24th 2012, with a tightly bunched-beam structure to allow the velocity of neutrinos to be accurately measured on an event-by-event basis. LVD has detected 48 neutrino events, associated with the beam, with a high absolute time accuracy. These events allow us to establish the following limit on the difference between the neutrino speed and the light velocity: -3.8 × 10(-6) < (v(ν)-c)/c < 3.1 × 10(-6) (at 99% C.L.). This value is an order of magnitude lower than previous direct measurements.

20.
Phys Rev Lett ; 103(3): 031102, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19659263

RESUMO

Exploiting an improved analysis of the nue signal from the explosion of a galactic core collapse supernova, we show that it is possible to identify within about 10 ms the time of the bounce, which is strongly correlated to the time of the maximum amplitude of the gravitational signal. This allows us to precisely identify the gravitational wave burst timing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA