Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(4): 31, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635243

RESUMO

Purpose: The poor visual outcomes associated with fungal keratitis (FK) underscore a need to identify fungal pathways that can serve as novel antifungal targets. In this report, we investigated whether hypoxia develops in the FK cornea and, by extension, if fungal hypoxia adaptation is essential for virulence in this setting. Methods: C57BL/6J mice were inoculated with Aspergillus fumigatus and Fusarium solani var. petroliphilum via topical overlay or intrastromal injection. At various time points post-inoculation (p.i.), animals were injected with pimonidazole for the detection of tissue hypoxia through immunofluorescence imaging. The A. fumigatus srbA gene was deleted through Cas9-mediated homologous recombination and its virulence was assessed in the topical infection model using slit-lamp microscopy and optical coherence tomography (OCT). Results: Topical inoculation with A. fumigatus resulted in diffuse pimonidazole staining across the epithelial and endothelial layers within 6 hours. Stromal hypoxia was evident by 48 hours p.i., which corresponded to leukocytic infiltration. Intrastromal inoculation with either A. fumigatus or F. solani similarly led to diffuse staining patterns across all corneal cell layers. The A. fumigatus srbA deletion mutant was unable to grow at oxygen levels below 3% in vitro, and corneas inoculated with the mutant failed to develop signs of corneal opacification, inflammation, or fungal burden. Conclusions: These results suggest that fungal antigen rapidly drives the development of corneal hypoxia, thus rendering fungal SrbA or related pathways essential for the establishment of infection. Such pathways may therefore serve as targets for novel antifungal intervention.


Assuntos
Úlcera da Córnea , Infecções Oculares Fúngicas , Fusarium , Nitroimidazóis , Camundongos , Animais , Camundongos Endogâmicos C57BL , Aspergillus fumigatus , Antifúngicos , Hipóxia
2.
PLoS Pathog ; 19(10): e1011435, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37906600

RESUMO

The Aspergillus fumigatus unfolded protein response (UPR) is a two-component relay consisting of the ER-bound IreA protein, which splices and activates the mRNA of the transcription factor HacA. Spliced hacA accumulates under conditions of acute ER stress in vitro, and UPR null mutants are hypovirulent in a murine model of invasive pulmonary infection. In this report, we demonstrate that a hacA deletion mutant (ΔhacA) is furthermore avirulent in a model of fungal keratitis, a corneal infection, and an important cause of ocular morbidity and unilateral blindness worldwide. Interestingly, we demonstrate that A. fumigatus hacA is spliced in infected lung samples, but not in the cornea, suggesting the amount of ER stress experienced by the fungus varies upon the host niche. To better understand how the UPR contributes to fungal cell biology across a spectrum of ER-stress levels, we employed transcriptomics on the wild-type and ΔhacA strains in glucose minimal media (low stress), glucose minimal media with dithiothreitol (high stress), and gelatin minimal media as a proxy for the nutrient stress encountered in the cornea (mid-level stress). These data altogether reveal a unique HacA-dependent transcriptome under each condition, suggesting that HacA activity is finely-tuned and required for proper fungal adaptation in each environment. Taken together, our results indicate that the fungal UPR could serve as an important antifungal target in the setting of both invasive pulmonary and corneal infections.


Assuntos
Aspergillus fumigatus , Ceratite , Animais , Camundongos , Resposta a Proteínas não Dobradas , Ceratite/genética , Nutrientes , Glucose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
Nat Commun ; 14(1): 2052, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045836

RESUMO

Fungal infections cause more than 1.5 million deaths a year. Due to emerging antifungal drug resistance, novel strategies are urgently needed to combat life-threatening fungal diseases. Here, we identify the host defense peptide mimetic, brilacidin (BRI) as a synergizer with caspofungin (CAS) against CAS-sensitive and CAS-resistant isolates of Aspergillus fumigatus, Candida albicans, C. auris, and CAS-intrinsically resistant Cryptococcus neoformans. BRI also potentiates azoles against A. fumigatus and several Mucorales fungi. BRI acts in A. fumigatus by affecting cell wall integrity pathway and cell membrane potential. BRI combined with CAS significantly clears A. fumigatus lung infection in an immunosuppressed murine model of invasive pulmonary aspergillosis. BRI alone also decreases A. fumigatus fungal burden and ablates disease development in a murine model of fungal keratitis. Our results indicate that combinations of BRI and antifungal drugs in clinical use are likely to improve the treatment outcome of aspergillosis and other fungal infections.


Assuntos
Aspergilose , Micoses , Humanos , Camundongos , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Caspofungina/farmacologia , Caspofungina/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Modelos Animais de Doenças , Aspergilose/microbiologia , Micoses/tratamento farmacológico , Aspergillus fumigatus , Candida albicans , Farmacorresistência Fúngica
4.
Microbiol Spectr ; 10(6): e0306922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36318036

RESUMO

Fungal diseases affect millions of humans annually, yet fungal pathogens remain understudied. The mold Aspergillus flavus can cause both aspergillosis and fungal keratitis infections, but closely related species are not considered clinically relevant. To study the evolution of A. flavus pathogenicity, we examined genomic and phenotypic traits of two strains of A. flavus and three closely related species, Aspergillus arachidicola (two strains), Aspergillus parasiticus (two strains), and Aspergillus nomiae (one strain). We identified >3,000 orthologous proteins unique to A. flavus, including seven biosynthetic gene clusters present in A. flavus strains and absent in the three nonpathogens. We characterized secondary metabolite production for all seven strains under two clinically relevant conditions, temperature and salt concentration. Temperature impacted metabolite production in all species, whereas salinity did not affect production of any species. Strains of the same species produced different metabolites. Growth under stress conditions revealed additional heterogeneity within species. Using the invertebrate fungal disease model Galleria mellonella, we found virulence of strains of the same species varied widely; A. flavus strains were not more virulent than strains of the nonpathogens. In a murine model of fungal keratitis, we observed significantly lower disease severity and corneal thickness for A. arachidicola compared to other species at 48 h postinfection, but not at 72 h. Our work identifies variations in key phenotypic, chemical, and genomic attributes between A. flavus and its nonpathogenic relatives and reveals extensive strain heterogeneity in virulence that does not correspond to the currently established clinical relevance of these species. IMPORTANCE Aspergillus flavus is a filamentous fungus that causes opportunistic human infections, such as aspergillosis and fungal keratitis, but its close relatives are considered nonpathogenic. To begin understanding how this difference in pathogenicity evolved, we characterized variation in infection-relevant genomic, chemical, and phenotypic traits between strains of A. flavus and its relatives. We found extensive variation (or strain heterogeneity) within the pathogenic A. flavus as well as within its close relatives, suggesting that strain-level differences may play a major role in the ability of these fungi to cause disease. Surprisingly, we also found that the virulence of strains from species not considered to be pathogens was similar to that of A. flavus in both invertebrate and murine models of disease. These results contrast with previous studies on Aspergillus fumigatus, another major pathogen in the genus, for which significant differences in infection-relevant chemical and phenotypic traits are observed between closely related pathogenic and nonpathogenic species.


Assuntos
Aspergilose , Ceratite , Humanos , Animais , Camundongos , Aspergillus flavus/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Genômica
5.
Structure ; 30(11): 1494-1507.e6, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36167065

RESUMO

Fungal infections are the leading cause of mortality by eukaryotic pathogens, with an estimated 150 million severe life-threatening cases and 1.7 million deaths reported annually. The rapid emergence of multidrug-resistant fungal isolates highlights the urgent need for new drugs with new mechanisms of action. In fungi, pantothenate phosphorylation, catalyzed by PanK enzyme, is the first step in the utilization of pantothenic acid and coenzyme A biosynthesis. In all fungi sequenced so far, this enzyme is encoded by a single PanK gene. Here, we report the crystal structure of a fungal PanK alone as well as with high-affinity inhibitors from a single chemotype identified through a high-throughput chemical screen. Structural, biochemical, and functional analyses revealed mechanisms governing substrate and ligand binding, dimerization, and catalysis and helped identify new compounds that inhibit the growth of several Candida species. The data validate PanK as a promising target for antifungal drug development.


Assuntos
Antifúngicos , Fosfotransferases (Aceptor do Grupo Álcool) , Antifúngicos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ácido Pantotênico/química , Ácido Pantotênico/metabolismo , Fungos
6.
Exp Eye Res ; 207: 108581, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33865843

RESUMO

Fungal keratitis (FK) pathology is driven by both fungal growth and inflammation within the corneal stroma. Standard in vitro infection models ̶ involving co-culture of the pathogen and the corneal cells in tissue culture medium ̶ are sufficient to probe host responses to the fungus; however, they lack the physiological structure and nutrient composition of the stroma to accurately study fungal invasiveness and metabolic processes. We therefore sought to develop a culture model of FK that would allow for both host and fungal cell biology to be evaluated in parallel. Towards this end, we employed a previously described system in which primary human cornea fibroblasts (HCFs) are cultured on transwell membranes, whereupon they secrete a three-dimensional (3D) collagen matrix that resembles the human stroma. We demonstrated that two common mold agents of FK, Fusarium petroliphilum and Aspergillus fumigatus, penetrated into these constructs and caused a disruption of the collagen matrix that is characteristic of infection. HCF morphology appeared altered in the presence of fungus and electron microscopy revealed a clear internalization of fungal spores into these cells. Consistent with this apparent phagocyte-like activity of the HCFs, mRNA and protein levels for several pro-inflammatory cytokines/chemokines (including TNFα, IL-1ß, IL-6, and IL-8) were significantly upregulated compared to uninfected samples. We similarly found an upregulation of several HCF metalloproteases (MMPs), which are enzymes that breakdown collagen during wound healing and may further activate pro-inflammatory signaling molecules. Finally, several fungal collagenase genes were upregulated during growth in the constructs relative to growth in tissue culture media alone, suggesting a fungal metabolic shift towards protein catabolism. Taken together, our results indicate that this 3D-stromal model provides a physiologically relevant system to study host and fungal cell pathobiology during FK.


Assuntos
Aspergilose/microbiologia , Ceratócitos da Córnea/microbiologia , Úlcera da Córnea/microbiologia , Infecções Oculares Fúngicas/microbiologia , Fusariose/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Animais , Aspergilose/metabolismo , Aspergilose/patologia , Aspergillus fumigatus/fisiologia , Técnicas de Cultura de Células , Ceratócitos da Córnea/metabolismo , Substância Própria/metabolismo , Substância Própria/microbiologia , Substância Própria/ultraestrutura , Úlcera da Córnea/metabolismo , Úlcera da Córnea/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Infecções Oculares Fúngicas/metabolismo , Infecções Oculares Fúngicas/patologia , Fusariose/metabolismo , Fusariose/patologia , Fusarium/fisiologia , Humanos , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real
7.
Phytopathology ; 111(7): 1064-1079, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33200960

RESUMO

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.


Assuntos
Fusarium , Fusarium/genética , Filogenia , Doenças das Plantas , Plantas
8.
Cells ; 9(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708830

RESUMO

Fungal keratitis is a potentially blinding infection of the cornea that afflicts diverse patient populations worldwide. The development of better treatment options requires a more thorough understanding of both microbial and host determinants of pathology, and a spectrum of experimental models have been developed toward this end. In vivo (animal) models most accurately capture complex pathological outcomes, but protocols may be challenging to implement and vary widely across research groups. In vitro models allow for the molecular dissection of specific host cell-fungal interactions, but they do so without the appropriate environmental/structural context; ex vivo (corneal explant) models provide the benefits of intact corneal tissue, but they do not provide certain pathological features, such as inflammation. In this review, we endeavor to outline the key features of these experimental models as well as describe key technical variations that could impact study design and outcomes.


Assuntos
Infecções Oculares Fúngicas/patologia , Ceratite/microbiologia , Ceratite/patologia , Animais , Pesquisa Biomédica , Modelos Animais de Doenças , Humanos , Modelos Biológicos
9.
Front Immunol ; 11: 867, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477351

RESUMO

The circadian clock broadly governs immune cell function, leading to time-of-day differences in inflammatory responses and subsequently, pathogen clearance. However, the effect of inflammatory signals on circadian machinery is poorly understood. We found that in bone marrow-derived macrophages, some host-derived pro-inflammatory cytokines, e.g., IFN-γ or TNF-α, and pathogen-associated molecular patterns, e.g., LPS or Pam3Csk4, suppress the amplitude in oscillations of circadian negative feedback arm clock components such as PER2, and when examined, specific combinations of these immune-related signals suppressed the amplitude of these oscillations to a greater degree in both bone marrow-derived and peritoneal macrophages. At the transcript level, multiple components of the circadian clock were affected in different ways by pro-inflammatory stimulus, including Per2 and Nr1d1. This suppressive effect on PER2 did not arise from nor correlate with cell death or clock resetting. Suppression of the clock by IFN-γ was dependent on its cognate receptor; however, pharmacological inhibition of the canonical JAK/STAT and MEK pathways did not hinder suppression, suggesting a mechanism involving a non-canonical pathway. In contrast, anti-inflammatory signals such as IL-4 and dexamethasone enhanced the expression of PER2 protein and Per2 mRNA. Our results suggest that the circadian system in macrophages can differentially respond to pro- and anti-inflammatory signals in their microenvironments.


Assuntos
Relógios Circadianos/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Circadianas Period/metabolismo , Animais , Células Cultivadas , Microambiente Celular , Regulação da Expressão Gênica , Interferon gama/metabolismo , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Proteínas Circadianas Period/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
10.
Microorganisms ; 7(10)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623147

RESUMO

Fungal keratitis (FK) is a site-threatening infection of the cornea associated with ocular trauma and contact lens wear. Members of the Fusarium solani species complex (FSSC) are predominant agents of FK worldwide, but genes that support their corneal virulence are poorly understood. As a means to bolster genetic analysis in FSSC pathogens, we sought to employ a CRISPR/Cas9 system in an FK isolate identified as Fusarium petroliphilum. Briefly, this approach involves the introduction of two components into fungal protoplasts: (1) A purified Cas9 protein complexed with guide RNAs that will direct the ribonuclease to cut on either side of the gene of interest, and (2) a "repair template" comprised of a hygromycin resistance cassette flanked by 40 bp of homology outside of the Cas9 cuts. In this way, Cas9-induced double strand breaks should potentiate double homologous replacement of the repair template at the desired locus. We targeted a putative ura3 ortholog since its deletion would result in an easily discernable uracil auxotrophy. Indeed, 10% of hygromycin-resistant transformants displayed the auxotrophic phenotype, all of which harbored the expected ura3 gene deletion. By contrast, none of the transformants from the repair template control (i.e., no Cas9) displayed the auxotrophic phenotype, indicating that Cas9 cutting was indeed required to promote homologous integration. Taken together, these data demonstrate that the in vitro Cas9 system is an easy and efficient approach for reverse genetics in FSSC organisms, including clinical isolates, which should enhance virulence research in these important but understudied ocular pathogens.

11.
J Biol Chem ; 294(32): 12146-12156, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227523

RESUMO

Phosphatidylserine decarboxylases (PSDs) catalyze the decarboxylation of phosphatidylserine to generate phosphatidylethanolamine, a critical step in phospholipid metabolism in both prokaryotes and eukaryotes. Most PSDs are membrane-bound, and classical radioisotope-based assays for determining their activity in vitro are not suitable for high-throughput drug screening. The finding that the PkPSD from Plasmodium knowlesi can be purified in a soluble and active form and the recent development of a fluorescence-based distyrylbenzene-bis-aldehyde (DSB-3) assay to measure PSD activity in vitro have laid the groundwork for screening chemical libraries for PSD inhibitors. Using this assay, here we conducted a high-throughput screen of a structurally diverse 130,858-compound library against PkPSD. Further characterization of the hits identified in this screening yielded five PkPSD inhibitors with IC50 values ranging from 3.1 to 42.3 µm Lead compounds were evaluated against the pathogenic yeast Candida albicans in the absence or presence of exogenous ethanolamine, and YU253467 and YU254403 were identified as inhibiting both native C. albicans PSD mitochondrial activity and C. albicans growth, with an MIC50 of 22.5 and 15 µg/ml without ethanolamine and an MIC50 of 75 and 60 µg/ml with ethanolamine, respectively. Together, these results provide the first proof of principle for the application of DSB-3-based fluorescent readouts in high-throughput screening for PSD inhibitors. The data set the stage for future analyses to identify more selective and potent PSD inhibitors with antimicrobial or antitumor activities.


Assuntos
Carboxiliases/antagonistas & inibidores , Inibidores Enzimáticos/análise , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala , Estirenos/química , Candida albicans/efeitos dos fármacos , Carboxiliases/genética , Carboxiliases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Etanolamina/farmacologia , Humanos , Concentração Inibidora 50 , Fosfatidilserinas/metabolismo , Plasmodium knowlesi/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação
12.
J Virol ; 93(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31167909

RESUMO

Ocular glands play a critical role in eye health through the secretion of factors directly onto the ocular surface. The cornea is a normally transparent tissue necessary for visual acuity located in the anterior segment of the eye. Corneal damage can occur during microbial infection of the cornea, resulting in potentially permanent visual deficits. The involvement of ocular glands during corneal infection has been only briefly described. We hypothesized that ocular glands contribute to resistance as an arm of the eye-associated lymphoid tissue and may also be susceptible to infection secondary to microbial keratitis. Utilizing a mouse model of herpes simplex virus 1 (HSV-1) keratitis, we found that infection of corneas resulted in subsequent infection of ocular glands, including harderian glands (HGs) and extraorbital glands. Similarly, infection of corneas with Pseudomonas aeruginosa resulted in secondary infection of ocular glands. A robust immune response, characterized by increased numbers of immune cells and inflammatory mediators, occurred within ocular glands following HSV-1 keratitis. Removal of HGs altered corneal resistance to HSV-1, as measured by increased viral load, decreased corneal edema, and decreased inflammatory cell infiltration. These novel findings suggest that ocular glands are involved in microbial keratitis through their susceptibility to secondary infection and contribution to corneal resistance.IMPORTANCE Microbial keratitis accounts for up to 700,000 clinical visits annually in the United States. The involvement of ocular glands during microbial keratitis is not readily appreciated, and treatment options do not address the consequences of ocular gland dysfunction. The present study shows that ocular glands are susceptible to direct infection by common ocular pathogens, including HSV-1 and Pseudomonas aeruginosa, subsequent to microbial keratitis. Additionally, ocular glands contribute soluble factors that play a role in corneal resistance to HSV-1 and alter viral load, corneal edema, and immune cell infiltration. Further studies are needed to elucidate the mechanisms by which this occurs.


Assuntos
Córnea/microbiologia , Córnea/virologia , Dacriocistite/etiologia , Resistência à Doença , Suscetibilidade a Doenças , Ceratite/complicações , Ceratite/etiologia , Animais , Biomarcadores , Córnea/patologia , Citocinas/metabolismo , Dacriocistite/diagnóstico , Modelos Animais de Doenças , Herpesvirus Humano 1/fisiologia , Mediadores da Inflamação/metabolismo , Ceratite/patologia , Camundongos , Especificidade de Órgãos
13.
Fungal Biol ; 122(6): 386-399, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29801782

RESUMO

The topic of 'fungal stress' is central to many important disciplines, including medical mycology, chronobiology, plant and insect pathology, industrial microbiology, material sciences, and astrobiology. The International Symposium on Fungal Stress (ISFUS) brought together researchers, who study fungal stress in a variety of fields. The second ISFUS was held in May 8-11 2017 in Goiania, Goiás, Brazil and hosted by the Instituto de Patologia Tropical e Saúde Pública at the Universidade Federal de Goiás. It was supported by grants from CAPES and FAPEG. Twenty-seven speakers from 15 countries presented their research related to fungal stress biology. The Symposium was divided into seven topics: 1. Fungal biology in extreme environments; 2. Stress mechanisms and responses in fungi: molecular biology, biochemistry, biophysics, and cellular biology; 3. Fungal photobiology in the context of stress; 4. Role of stress in fungal pathogenesis; 5. Fungal stress and bioremediation; 6. Fungal stress in agriculture and forestry; and 7. Fungal stress in industrial applications. This article provides an overview of the science presented and discussed at ISFUS-2017.


Assuntos
Fungos/fisiologia , Fungos/patogenicidade , Estresse Fisiológico , Brasil , Microbiologia Ambiental , Microbiologia Industrial , Micologia
14.
Appl Microbiol Biotechnol ; 102(9): 3849-3863, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29569180

RESUMO

Regulatable promoters are important genetic tools, particularly for assigning function to essential and redundant genes. They can also be used to control the expression of enzymes that influence metabolic flux or protein secretion, thereby optimizing product yield in bioindustry. This review will focus on regulatable systems for use in filamentous fungi, an important group of organisms whose members include key research models, devastating pathogens of plants and animals, and exploitable cell factories. Though we will begin by cataloging those promoters that are controlled by nutritional or chemical means, our primary focus will rest on those who can be controlled by a literal flip-of-the-switch: promoters of light-regulated genes. The vvd promoter of Neurospora will first serve as a paradigm for how light-driven systems can provide tight, robust, tunable, and temporal control of either autologous or heterologous fungal proteins. We will then discuss a theoretical approach to, and practical considerations for, the development of such promoters in other species. To this end, we have compiled genes from six previously published light-regulated transcriptomic studies to guide the search for suitable photoregulatable promoters in your fungus of interest.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Genes Fúngicos/genética , Luz , Neurospora crassa/genética , Neurospora crassa/efeitos da radiação , Regiões Promotoras Genéticas/genética
15.
J Biol Rhythms ; 33(1): 99-105, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29281921

RESUMO

Circadian rhythms govern immune cell function, giving rise to time-of-day variation in the recognition and clearance of bacterial or viral pathogens; to date, however, no such regulation of the host-fungal interaction has been described. In this report, we use murine models to explore circadian control of either fungal-macrophage interactions in vitro or pathogen clearance from the lung in vivo. First, we show that expression of the important fungal pattern recognition receptor Dectin-1 ( clec7a), from either bone marrow-derived or peritoneum-derived macrophages, is not under circadian regulation at either the level of transcript or cell surface protein expression. Consistent with this finding, the phagocytic activity of macrophages in culture against spores of the pathogen Aspergillus fumigatus also did not vary over time. To account for the multiple cell types and processes that may be coordinated in a circadian fashion in vivo, we examined the clearance of A. fumigatus from the lungs of immunocompetent mice. Interestingly, animals inoculated at night demonstrated a 2-fold enhancement in clearance compared with animals inoculated in the morning. Taken together, our data suggest that while molecular recognition of fungi by immune cells may not be circadian, other processes in vivo may still allow for time-of-day differences in fungal clearance from the lung.


Assuntos
Aspergillus fumigatus/fisiologia , Ritmo Circadiano/fisiologia , Pulmão/microbiologia , Macrófagos/fisiologia , Animais , Aspergillus fumigatus/metabolismo , Lectinas Tipo C/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Camundongos
16.
mBio ; 7(5)2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27651362

RESUMO

UNLABELLED: The given strain of Aspergillus fumigatus under study varies across laboratories, ranging from a few widely used "standards," e.g., Af293 or CEA10, to locally acquired isolates that may be unique to one investigator. Since experiments concerning physiology or gene function are seldom replicated by others, i.e., in a different A. fumigatus background, the extent to which behavioral heterogeneity exists within the species is poorly understood. As a proxy for assessing such intraspecies variability, we analyzed the light response of 15 A. fumigatus isolates and observed striking quantitative and qualitative heterogeneity among them. The majority of the isolates fell into one of two seemingly mutually exclusive groups: (i) "photopigmenters" that robustly accumulate hyphal melanin in the light and (ii) "photoconidiators" that induce sporulation in the light. These two distinct responses were both governed by the same upstream blue light receptor, LreA, indicating that a specific protein's contribution can vary in a strain-dependent manner. Indeed, while LreA played no apparent role in regulating cell wall homeostasis in strain Af293, it was essential in that regard in strain CEA10. The manifest heterogeneity in the photoresponses led us to compare the virulence levels of selected isolates in a murine model; remarkably, the virulence did vary greatly, although not in a manner that correlated with their overt light response. Taken together, these data highlight the extent to which isolates of A. fumigatus can vary, with respect to both broad physiological characteristics (e.g., virulence and photoresponse) and specific protein functionality (e.g., LreA-dependent phenotypes). IMPORTANCE: The current picture of Aspergillus fumigatus biology is akin to a collage, patched together from data obtained from disparate "wild-type" strains. In a systematic assessment of 15 A. fumigatus isolates, we show that the species is highly heterogeneous with respect to its light response and virulence. Whereas some isolates accumulate pigments in light as previously reported with strain Af293, most induce sporulation which had not been previously observed. Other photoresponsive behaviors are also nonuniform, and phenotypes of identical gene deletants vary in a background-dependent manner. Moreover, the virulence of several selected isolates is highly variable in a mouse model and apparently does not track with any observed light response. Cumulatively, this work illuminates the fact that data obtained with a single A. fumigatus isolate are not necessarily predictive of the species as whole. Accordingly, researchers should be vigilant when making conclusions about their own work or when interpreting data from the literature.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/fisiologia , Variação Genética , Luz , Processos Fototróficos/genética , Animais , Aspergillus fumigatus/isolamento & purificação , Parede Celular/genética , Parede Celular/metabolismo , Modelos Animais de Doenças , Deleção de Genes , Genótipo , Hifas/fisiologia , Melaninas/biossíntese , Camundongos , Esporos Fúngicos/genética , Virulência/genética
17.
mBio ; 7(5)2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27651366

RESUMO

UNLABELLED: Previous work has shown that environmental and clinical isolates of Aspergillus fumigatus represent a diverse population that occupies a variety of niches, has extensive genetic diversity, and exhibits virulence heterogeneity in a number of animal models of invasive pulmonary aspergillosis (IPA). However, mechanisms explaining differences in virulence among A. fumigatus isolates remain enigmatic. Here, we report a significant difference in virulence of two common lab strains, CEA10 and AF293, in the murine triamcinolone immunosuppression model of IPA, in which we previously identified severe low oxygen microenvironments surrounding fungal lesions. Therefore, we hypothesize that the ability to thrive within these lesions of low oxygen promotes virulence of A. fumigatus in this model. To test this hypothesis, we performed in vitro fitness and in vivo virulence analyses in the triamcinolone murine model of IPA with 14 environmental and clinical isolates of A. fumigatus Among these isolates, we observed a strong correlation between fitness in low oxygen in vitro and virulence. In further support of our hypothesis, experimental evolution of AF293, a strain that exhibits reduced fitness in low oxygen and reduced virulence in the triamcinolone model of IPA, results in a strain (EVOL20) that has increased hypoxia fitness and a corresponding increase in virulence. Thus, the ability to thrive in low oxygen correlates with virulence of A. fumigatus isolates in the context of steroid-mediated murine immunosuppression. IMPORTANCE: Aspergillus fumigatus occupies multiple environmental niches, likely contributing to the genotypic and phenotypic heterogeneity among isolates. Despite reports of virulence heterogeneity, pathogenesis studies often utilize a single strain for the identification and characterization of virulence and immunity factors. Here, we describe significant variation between A. fumigatus isolates in hypoxia fitness and virulence, highlighting the advantage of including multiple strains in future studies. We also illustrate that hypoxia fitness correlates strongly with increased virulence exclusively in the nonleukopenic murine triamcinolone immunosuppression model of IPA. Through an experimental evolution experiment, we observe that chronic hypoxia exposure results in increased virulence of A. fumigatus We describe here the first observation of a model-specific virulence phenotype correlative with in vitro fitness in hypoxia and pave the way for identification of hypoxia-mediated mechanisms of virulence in the fungal pathogen A. fumigatus.


Assuntos
Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Aptidão Genética , Variação Genética , Animais , Aspergilose/microbiologia , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/fisiologia , Microambiente Celular , Modelos Animais de Doenças , Genótipo , Humanos , Camundongos , Oxigênio , Triancinolona/administração & dosagem , Virulência
18.
Environ Microbiol ; 18(1): 5-20, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26373782

RESUMO

Light plays an important role for most organisms on this planet, serving either as a source of energy or information for the adaptation of biological processes to specific times of day. The fungal kingdom is estimated to contain well over a million species, possibly 10-fold more, and it is estimated that a majority of the fungi respond to light, eliciting changes in several physiological characteristics including pathogenesis, development and secondary metabolism. Two model organisms for photobiological studies have taken centre-stage over the last few decades--Neurospora crassa and Aspergillus nidulans. In this review, we will first discuss our understanding of the light response in N. crassa, about which the most is known, and will then juxtapose N. crassa with A. nidulans, which, as will be described below, provides an excellent template for understanding photosensory cross-talk. Finally, we will end with a commentary on the variability of the light response among other relevant fungi, and how our molecular understanding in the aforementioned model organisms still provides a strong base for dissecting light responses in such species.


Assuntos
Aspergillus nidulans/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Neurospora crassa/fisiologia , Fototropismo/fisiologia , DNA Fúngico/genética , Luz
19.
Eukaryot Cell ; 14(11): 1073-80, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26318395

RESUMO

Low rates of homologous recombination have broadly encumbered genetic studies in the fungal pathogen Aspergillus fumigatus. The CRISPR/Cas9 system of bacteria has recently been developed for targeted mutagenesis of eukaryotic genomes with high efficiency and, importantly, through a mechanism independent of homologous repair machinery. As this new technology has not been developed for use in A. fumigatus, we sought to test its feasibility for targeted gene disruption in this organism. As a proof of principle, we first demonstrated that CRISPR/Cas9 can indeed be used for high-efficiency (25 to 53%) targeting of the A. fumigatus polyketide synthase gene (pksP), as evidenced by the generation of colorless (albino) mutants harboring the expected genomic alteration. We further demonstrated that the constitutive expression of the Cas9 nuclease by itself is not deleterious to A. fumigatus growth or virulence, thus making the CRISPR system compatible with studies involved in pathogenesis. Taken together, these data demonstrate that CRISPR can be utilized for loss-of-function studies in A. fumigatus and has the potential to bolster the genetic toolbox for this important pathogen.


Assuntos
Aspergillus fumigatus/genética , Sistemas CRISPR-Cas , Sequência de Bases , Proteínas Fúngicas/genética , Marcação de Genes/métodos , Dados de Sequência Molecular , Policetídeo Sintases/genética
20.
Curr Genet ; 61(3): 275-88, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25323429

RESUMO

Visible light is an important source of energy and information for much of life on this planet. Though fungi are neither photosynthetic nor capable of observing adjacent objects, it is estimated that the majority of fungal species display some form of light response, ranging from developmental decision-making to metabolic reprogramming to pathogenesis. As such, advances in our understanding of fungal photobiology will likely reach the broad fields impacted by these organisms, including agriculture, industry and medicine. In this review, we will first describe the mechanisms by which fungi sense light and then discuss the selective advantages likely imparted by their ability to do so.


Assuntos
Proteínas Fúngicas/metabolismo , Fungos/fisiologia , Processos Fototróficos , Criptocromos/química , Criptocromos/metabolismo , Desoxirribodipirimidina Fotoliase/química , Desoxirribodipirimidina Fotoliase/metabolismo , Proteínas Fúngicas/química , Luz , Domínios e Motivos de Interação entre Proteínas , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA