Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Biochem Zool ; 95(4): 317-325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617095

RESUMO

AbstractHibernation requires balancing energy and water demands over several months. Many studies have noted the importance of fat for hibernation energy budgets, but protein catabolism in hibernation has received less attention, and whole-animal changes in lean mass have not previously been considered. We used quantitative magnetic resonance body composition analysis to measure deposition of fat and lean mass of cave myotis (Myotis velifer) during the prehibernation period and decreases in fat and lean mass of Townsend's big-eared bats (Corynorhinus townsendii) during hibernation. For cave myotis, lean mass represented 25% and 38% (female and male, respectively) of prehibernation mass gain. In hibernating Townsend's big-eared bats, lean mass decrease was similar for females and males. We used values for Townsend's big-eared bats to explore the functional implications of lean mass change for water and energy budgets. Lean mass accounted for a substantial proportion of mass change during hibernation (female: 18%, male: 35%), and although not accounting for a large proportion of the energy budget (female: 3%, male: 7%), lean mass catabolism represented an important contribution to water production (female: 14%, male: 29%). Although most mammals cannot rely on protein catabolism for metabolic water production because of the water cost of excreting urea, we propose a variation of the protein-for-water strategy whereby hibernators could temporally compartmentalize the benefits of protein catabolism to periods of torpor and the water cost to periodic arousals when free drinking water is typically available. Combined, our analyses demonstrate the importance of considering changes in lean mass during hibernation.


Assuntos
Quirópteros , Hibernação , Torpor , Animais , Feminino , Masculino , Mamíferos , Água
2.
J Comp Physiol B ; 192(1): 171-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34426856

RESUMO

Species with broad geographic ranges may experience varied environmental conditions throughout their range leading to local adaptation. Variation among populations reflects potential adaptability or plasticity, with implications for populations impacted by disease, climate change, and other anthropogenic influences. However, behavior may counteract divergent selection among populations. We studied intraspecific variation in hibernation physiology of Myotis lucifugus (little brown myotis) and Corynorhinus townsendii (Townsend's big-eared bat), two species of bats with large geographic ranges. We studied M. lucifugus at three hibernacula which spanned a latitudinal gradient of 1500 km, and C. townsendii from 6 hibernacula spread across 1200 km latitude and 1200 km longitude. We found no difference in torpid metabolic rate among populations of either species, nor was there a difference in the effect of ambient temperature among sites. Evaporative water loss was similar among populations of both species, with the exception of one C. townsendii pairwise site difference and one M. lucifugus site that differed from the others. We suggest the general lack of geographic variation is a consequence of behavioral microhabitat selection. As volant animals, bats can travel relatively long distances in search of preferred microclimates for hibernation. Despite dramatic macroclimate differences among populations, hibernating bats are able to find preferred microclimate conditions within their range, resulting in similar selection pressures among populations spread across wide geographic ranges.


Assuntos
Quirópteros , Hibernação , Adaptação Fisiológica , Animais , Quirópteros/fisiologia , Hibernação/fisiologia , Microclima
3.
Sci Rep ; 11(1): 20759, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675252

RESUMO

Hibernation is widespread among mammals in a variety of environmental contexts. However, few experimental studies consider interspecific comparisons, which may provide insight into general patterns of hibernation strategies. We studied 13 species of free-living bats, including populations spread over thousands of kilometers and diverse habitats. We measured torpid metabolic rate (TMR) and evaporative water loss (two key parameters for understanding hibernation energetics) across a range of temperatures. There was no difference in minimum TMR among species (i.e., all species achieved similarly low torpid metabolic rate) but the temperature associated with minimum TMR varied among species. The minimum defended temperature (temperature below which TMR increased) varied from 8 °C to < 2 °C among species. Conversely, evaporative water loss varied among species, with species clustered in two groups representing high and low evaporative water loss. Notably, species that have suffered population declines due to white-nose syndrome fall in the high evaporative water loss group and less affected species in the low evaporative water loss group. Documenting general patterns of physiological diversity, and associated ecological implications, contributes to broader understanding of biodiversity, and may help predict which species are at greater risk of environmental and anthropogenic stressors.


Assuntos
Quirópteros/fisiologia , Hibernação , Perda Insensível de Água , Animais , Regulação da Temperatura Corporal , Metabolismo Energético , Temperatura , Água/metabolismo
4.
Ecol Evol ; 11(17): 11604-11614, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522327

RESUMO

White-nose syndrome (WNS) has decimated hibernating bat populations across eastern and central North America for over a decade. Disease severity is driven by the interaction between bat characteristics, the cold-loving fungal agent, and the hibernation environment. While we further improve hibernation energetics models, we have yet to examine how spatial heterogeneity in host traits is linked to survival in this disease system. Here, we develop predictive spatial models of body mass for the little brown myotis (Myotis lucifugus) and reassess previous definitions of the duration of hibernation of this species. Using data from published literature, public databases, local experts, and our own fieldwork, we fit a series of generalized linear models with hypothesized abiotic drivers to create distribution-wide predictions of prehibernation body fat and hibernation duration. Our results provide improved estimations of hibernation duration and identify a scaling relationship between body mass and body fat; this relationship allows for the first continuous estimates of prehibernation body mass and fat across the species' distribution. We used these results to inform a hibernation energetic model to create spatially varying fat use estimates for M. lucifugus. These results predict WNS mortality of M. lucifugus populations in western North America may be comparable to the substantial die-off observed in eastern and central populations.

5.
Ecol Evol ; 11(1): 506-515, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437446

RESUMO

In multihost disease systems, differences in mortality between species may reflect variation in host physiology, morphology, and behavior. In systems where the pathogen can persist in the environment, microclimate conditions, and the adaptation of the host to these conditions, may also impact mortality. White-nose syndrome (WNS) is an emerging disease of hibernating bats caused by an environmentally persistent fungus, Pseudogymnoascus destructans. We assessed the effects of body mass, torpid metabolic rate, evaporative water loss, and hibernaculum temperature and water vapor deficit on predicted overwinter survival of bats infected by P. destructans. We used a hibernation energetics model in an individual-based model framework to predict the probability of survival of nine bat species at eight sampling sites across North America. The model predicts time until fat exhaustion as a function of species-specific host characteristics, hibernaculum microclimate, and fungal growth. We fit a linear model to determine relationships with each variable and predicted survival and semipartial correlation coefficients to determine the major drivers in variation in bat survival. We found host body mass and hibernaculum water vapor deficit explained over half of the variation in survival with WNS across species. As previous work on the interplay between host and pathogen physiology and the environment has focused on species with narrow microclimate preferences, our view on this relationship is limited. Our results highlight some key predictors of interspecific survival among western bat species and provide a framework to assess impacts of WNS as the fungus continues to spread into western North America.

6.
J Med Chem ; 63(13): 6694-6707, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32501690

RESUMO

Stabilization of protein-protein interactions (PPIs) holds great potential for therapeutic agents, as illustrated by the successful drugs rapamycin and lenalidomide. However, how such interface-binding molecules can be created in a rational, bottom-up manner is a largely unanswered question. We report here how a fragment-based approach can be used to identify chemical starting points for the development of small-molecule stabilizers that differentiate between two different PPI interfaces of the adapter protein 14-3-3. The fragments discriminately bind to the interface of 14-3-3 with the recognition motif of either the tumor suppressor protein p53 or the oncogenic transcription factor TAZ. This X-ray crystallography driven study shows that the rim of the interface of individual 14-3-3 complexes can be targeted in a differential manner with fragments that represent promising starting points for the development of specific 14-3-3 PPI stabilizers.


Assuntos
Proteínas 14-3-3/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas 14-3-3/química , Desenho de Fármacos , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica
7.
J Exp Biol ; 223(Pt 6)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32054681

RESUMO

Processes associated with recovery of survivors are understudied components of wildlife infectious diseases. White-nose syndrome (WNS) in bats provides an opportunity to study recovery of disease survivors, understand implications of recovery for individual energetics, and assess the role of survivors in pathogen transmission. We documented temporal patterns of recovery from WNS in little brown bats (Myotis lucifugus) following hibernation to test the hypotheses that: (1) recovery of wing structure from WNS matches a rapid time scale (i.e. approximately 30 days) suggested by data from free-ranging bats; (2) torpor expression plays a role in recovery; (3) wing physiological function returns to normal alongside structural recovery; and (4) pathogen loads decline quickly during recovery. We collected naturally infected bats at the end of hibernation, brought them into captivity, and quantified recovery over 40 days by monitoring body mass, wing damage, thermoregulation, histopathology of wing biopsies, skin surface lipids and fungal load. Most metrics returned to normal within 30 days, although wing damage was still detectable at the end of the study. Torpor expression declined overall throughout the study, but bats expressed relatively shallow torpor bouts - with a plateau in minimum skin temperature - during intensive healing between approximately days 8 and 15. Pathogen loads were nearly undetectable after the first week of the study, but some bats were still detectably infected at day 40. Our results suggest that healing bats face a severe energetic imbalance during early recovery from direct costs of healing and reduced foraging efficiency. Management of WNS should not rely solely on actions during winter, but should also aim to support energy balance of recovering bats during spring and summer.


Assuntos
Ascomicetos , Quirópteros , Hibernação , Torpor , Animais , Nariz
8.
PLoS One ; 14(10): e0222311, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31671100

RESUMO

Hibernation consists of extended durations of torpor interrupted by periodic arousals. The 'dehydration hypothesis' proposes that hibernating mammals arouse to replenish water lost through evaporation during torpor. Arousals are energetically expensive, and increased arousal frequency can alter survival throughout hibernation. Yet we lack a means to assess the effect of evaporative water loss (EWL), determined by animal physiology and hibernation microclimate, on torpor bout duration and subsequent survival. White-nose syndrome (WNS), a devastating disease impacting hibernating bats, causes increased frequency of arousals during hibernation and EWL has been hypothesized to contribute to this increased arousal frequency. WNS is caused by a fungus, which grows well in humid hibernaculum environments and damages wing tissue important for water conservation. Here, we integrated the effect of EWL on torpor expression in a hibernation energetics model, including the effects of fungal infection, to determine the link between EWL and survival. We collected field data for Myotis lucifugus, a species that experiences high mortality from WNS, to gather parameters for the model. In saturating conditions, we predicted healthy bats experience minimal mortality. Infected bats, however, suffer high fungal growth in highly saturated environments, leading to exhaustion of fat stores before spring. Our results suggest that host adaptation to humid environments leads to increased arousal frequency from infection, which drives mortality across hibernaculum conditions. Our modified hibernation model provides a tool to assess the interplay between host physiology, hibernaculum microclimate, and diseases such as WNS on winter survival.


Assuntos
Hibernação/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Torpor/fisiologia , Água/metabolismo , Animais , Nível de Alerta/fisiologia , Quirópteros/microbiologia , Quirópteros/fisiologia , Fungos/patogenicidade , Nariz/microbiologia , Nariz/fisiopatologia
9.
J Therm Biol ; 81: 185-193, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30975417

RESUMO

Many species use stored energy to hibernate through periods of resource limitation. Hibernation, a physiological state characterized by depressed metabolism and body temperature, is critical to winter survival and reproduction, and therefore has been extensively quantified and modeled. Hibernation consists of alternating phases of extended periods of torpor (low body temperature, low metabolic rate), and energetically costly periodic arousals to normal body temperature. Arousals consist of multiple phases: warming, euthermia, and cooling. Warming and euthermic costs are regularly included in energetic models, but although cooling to torpid body temperature is an important phase of the torpor-arousal cycle, it is often overlooked in energetic models. When included, cooling cost is assumed to be 67% of warming cost, an assumption originally derived from a single study that measured cooling cost in ground squirrels. Since this study, the same proportional value has been assumed across a variety of hibernating species. However, no additional values have been derived. We derived a model of cooling cost from first principles and validated the model with empirical energetic measurements. We compared the assumed 67% proportional cooling cost with our model-predicted cooling cost for 53 hibernating mammals. Our results indicate that using 67% of warming cost only adequately represents cooling cost in ground squirrel-sized mammals. In smaller species, this value overestimates cooling cost and in larger species, the value underestimates cooling cost. Our model allows for the generalization of energetic costs for multiple species using species-specific physiological and morphometric parameters, and for predictions over variable environmental conditions.


Assuntos
Quirópteros/fisiologia , Hibernação , Modelos Biológicos , Sciuridae/fisiologia , Animais , Metabolismo Energético , Mamíferos/fisiologia
10.
ACS Chem Neurosci ; 10(3): 1729-1743, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30496686

RESUMO

Synaptic dysfunction is a pathological feature in many neurodegenerative disorders, including Alzheimer's disease, and synaptic loss correlates closely with cognitive decline. Histone deacetylases (HDACs) are involved in chromatin remodeling and gene expression and have been shown to regulate synaptogenesis and synaptic plasticity, thus providing an attractive drug discovery target for promoting synaptic growth and function. To date, HDAC inhibitor compounds with prosynaptic effects are plagued by known HDAC dose-limiting hematological toxicities, precluding their application to treating chronic neurologic conditions. We have identified a series of novel HDAC inhibitor compounds that selectively inhibit the HDAC-co-repressor of repressor element-1 silencing transcription factor (CoREST) complex while minimizing hematological side effects. HDAC1 and HDAC2 associate with multiple co-repressor complexes including CoREST, which regulates neuronal gene expression. We show that selectively targeting the CoREST co-repressor complex with the representative compound Rodin-A results in increased spine density and synaptic proteins, and improved long-term potentiation in a mouse model at doses that provide a substantial safety margin that would enable chronic treatment. The CoREST-selective HDAC inhibitor Rodin-A thus represents a promising therapeutic strategy in targeting synaptic pathology involved in neurologic disorders.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Histona Desacetilases/metabolismo , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Proteínas Repressoras/genética
11.
ACS Chem Biol ; 13(11): 3131-3141, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30335946

RESUMO

B-cell lymphoma 6 (BCL6) inhibition is a promising mechanism for treating hematological cancers but high quality chemical probes are necessary to evaluate its therapeutic potential. Here we report potent BCL6 inhibitors that demonstrate cellular target engagement and exhibit exquisite selectivity for BCL6 based on mass spectrometry analyses following chemical proteomic pull down. Importantly, a proteolysis-targeting chimera (PROTAC) was also developed and shown to significantly degrade BCL6 in a number of diffuse large B-cell lymphoma (DLBCL) cell lines, but neither BCL6 inhibition nor degradation selectively induced marked phenotypic response. To investigate, we monitored PROTAC directed BCL6 degradation in DLBCL OCI-Ly1 cells by immunofluorescence and discovered a residual BCL6 population. Analysis of subcellular fractions also showed incomplete BCL6 degradation in all fractions despite having measurable PROTAC concentrations, together providing a rationale for the weak antiproliferative response seen with both BCL6 inhibitor and degrader. In summary, we have developed potent and selective BCL6 inhibitors and a BCL6 PROTAC that effectively degraded BCL6, but both modalities failed to induce a significant phenotypic response in DLBCL despite achieving cellular concentrations.


Assuntos
Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Quinolonas/farmacologia , Talidomida/análogos & derivados , Talidomida/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Ligantes , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Proteólise , Proteínas Proto-Oncogênicas c-bcl-6/química , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Quinolonas/síntese química , Quinolonas/metabolismo , Talidomida/síntese química , Talidomida/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
13.
J Med Chem ; 60(10): 4386-4402, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28485934

RESUMO

Inhibition of the protein-protein interaction between B-cell lymphoma 6 (BCL6) and corepressors has been implicated as a therapeutic target in diffuse large B-cell lymphoma (DLBCL) cancers and profiling of potent and selective BCL6 inhibitors are critical to test this hypothesis. We identified a pyrazolo[1,5-a]pyrimidine series of BCL6 binders from a fragment screen in parallel with a virtual screen. Using structure-based drug design, binding affinity was increased 100000-fold. This involved displacing crystallographic water, forming new ligand-protein interactions and a macrocyclization to favor the bioactive conformation of the ligands. Optimization for slow off-rate constant kinetics was conducted as well as improving selectivity against an off-target kinase, CK2. Potency in a cellular BCL6 assay was further optimized to afford highly selective probe molecules. Only weak antiproliferative effects were observed across a number of DLBCL lines and a multiple myeloma cell line without a clear relationship to BCL6 potency. As a result, we conclude that the BCL6 hypothesis in DLBCL cancer remains unproven.


Assuntos
Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores
14.
Curr Drug Targets ; 18(15): 1805-1809, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27397063

RESUMO

BACKGROUND: Cardiac tumors rare cardiac disorders with an overall incidence rate < 0.33%. Cardiac tumors can be classified as primary or secondary depending on the origins of tumors. Primary cardiac tumors (5% incidence) are rare compared with the secondary (95%, metastases of the heart) cardiac tumors. OBJECTIVE: Given that cardiac tumors exhibit some nonspecific symptoms compared with other heart diseases, clinical diagnosis of cardiac tumors is rather challenging. Thus we will try to review the classification and pathogenesis of cardiac tumors. CONCLUSION: Current evidence revealed that 75% of cardiac tumors are considered benign (myxoma, fibromas, lipomas, rhabdomyomas, hemangiomas, teratomas, papillary fibroelastomas, pericardial cysts or cystic tumor of atrioventricular node). Clinical differential diagnosis of cardiac tumors is mainly based on imaging techniques including transthoracic and transesophageal echocardiograms, computed tomography (CT) scans and magnetic resonance imaging (MRIs). This mini-review tries to summarize recent understanding of the pathogenesis and therapeutics of cardiac tumors.


Assuntos
Neoplasias Cardíacas/diagnóstico por imagem , Neoplasias Cardíacas/patologia , Ecocardiografia , Ecocardiografia Transesofagiana , Neoplasias Cardíacas/classificação , Neoplasias Cardíacas/epidemiologia , Humanos , Incidência , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
15.
J R Soc Interface ; 13(122)2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27655669

RESUMO

Biological systems consistently outperform autonomous systems governed by engineered algorithms in their ability to reactively avoid collisions. To better understand this discrepancy, a collision avoidance algorithm was applied to frames of digitized video trajectory data from bats, swallows and fish (Myotis velifer, Petrochelidon pyrrhonota and Danio aequipinnatus). Information available from visual cues, specifically relative position and velocity, was provided to the algorithm which used this information to define collision cones that allowed the algorithm to find a safe velocity requiring minimal deviation from the original velocity. The subset of obstacles provided to the algorithm was determined by the animal's sensing range in terms of metric and topological distance. The algorithmic calculated velocities showed good agreement with observed biological velocities, indicating that the algorithm was an informative basis for comparison with the three species and could potentially be improved for engineered applications with further study.

16.
Sci Rep ; 6: 27252, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27264498

RESUMO

Flying animals accomplish high-speed navigation through fields of obstacles using a suite of sensory modalities that blend spatial memory with input from vision, tactile sensing, and, in the case of most bats and some other animals, echolocation. Although a good deal of previous research has been focused on the role of individual modes of sensing in animal locomotion, our understanding of sensory integration and the interplay among modalities is still meager. To understand how bats integrate sensory input from echolocation, vision, and spatial memory, we conducted an experiment in which bats flying in their natural habitat were challenged over the course of several evening emergences with a novel obstacle placed in their flight path. Our analysis of reconstructed flight data suggests that vision, echolocation, and spatial memory together with the possible exercise of an ability in using predictive navigation are mutually reinforcing aspects of a composite perceptual system that guides flight. Together with the recent development in robotics, our paper points to the possible interpretation that while each stream of sensory information plays an important role in bat navigation, it is the emergent effects of combining modalities that enable bats to fly through complex spaces.


Assuntos
Quirópteros/fisiologia , Ecolocação/fisiologia , Voo Animal/fisiologia , Animais , Comportamento Animal/fisiologia , Ecossistema , Robótica , Percepção Espacial , Memória Espacial/fisiologia , Visão Ocular/fisiologia
17.
Drug Discov Today ; 21(8): 1272-83, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27179986

RESUMO

Modest success rates in fragment-based lead generation (FBLG) projects at AstraZeneca (AZ) prompted operational changes to improve performance. In this review, we summarize these changes, emphasizing the construction and composition of the AZ fragment library, screening practices and working model. We describe the profiles of the screening method for specific fragment subsets and statistically assess our ability to follow up on fragment hits through near-neighbor selection. Performance analysis of our second-generation fragment library (FL2) in screening campaigns illustrates the complementary nature of flat and 3D fragments in exploring protein-binding pockets and highlights our ability to deliver fragment hits using multiple screening techniques for various target classes. The new model has had profound impact on the successful delivery of lead series to drug discovery projects.


Assuntos
Descoberta de Drogas/métodos , Indústria Farmacêutica , Bibliotecas de Moléculas Pequenas
18.
PLoS One ; 11(1): e0147322, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26807981

RESUMO

BACKGROUND: The endoplasmic reticulum (ER) plays an essential role in ensuring proper folding of the newly synthesized proteins. Aberrant ER homeostasis triggers ER stress and development of cardiovascular diseases. ADH is involved in catalyzing ethanol to acetaldehyde although its role in cardiovascular diseases other than ethanol metabolism still remains elusive. This study was designed to examine the impact of ADH on ER stress-induced cardiac anomalies and underlying mechanisms involved using cardiac-specific overexpression of alcohol dehydrogenase (ADH). METHODS: ADH and wild-type FVB mice were subjected to the ER stress inducer tunicamycin (1 mg/kg, i.p., for 48 hrs). Myocardial mechanical and intracellular Ca(2+) properties, ER stress, autophagy and associated cell signaling molecules were evaluated. RESULTS: ER stress compromised cardiac contractile function (evidenced as reduced fractional shortening, peak shortening, maximal velocity of shortening/relengthening, prolonged relengthening duration and impaired intracellular Ca(2+) homeostasis), oxidative stress and upregulated autophagy (increased LC3B, Atg5, Atg7 and p62), along with dephosphorylation of PTEN, Akt and mTOR, all of which were attenuated by ADH. In vitro study revealed that ER stress-induced cardiomyocyte anomaly was abrogated by ADH overexpression or autophagy inhibition using 3-MA. Interestingly, the beneficial effect of ADH was obliterated by autophagy induction, inhibition of Akt and mTOR. ER stress also promoted phosphorylation of the stress signaling ERK and JNK, the effect of which was unaffected by ADH transgene. CONCLUSIONS: Taken together, these findings suggested that ADH protects against ER stress-induced cardiac anomalies possibly via attenuation of oxidative stress and PTEN/Akt/mTOR pathway-regulated autophagy.


Assuntos
Álcool Desidrogenase/fisiologia , Autofagia/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Contração Miocárdica/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Disfunção Ventricular Esquerda/enzimologia , Adenina/análogos & derivados , Adenina/farmacologia , Álcool Desidrogenase/genética , Animais , Autofagia/efeitos dos fármacos , Cálcio/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Miocárdio/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transgenes , Tunicamicina/toxicidade , Ultrassonografia , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
19.
Bioorg Med Chem Lett ; 25(7): 1621-6, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25708617

RESUMO

Early lead compounds in this gamma secretase modulator series were found to potently inhibit CYP3A4 and other human CYP isoforms increasing their risk of causing drug-drug-interactions (DDIs). Using structure-activity relationships and CYP3A4 structural information, analogs were developed that minimized this DDI potential. Three of these new analogs were further characterized by rat PK, rat PK/PD and rat exploratory toxicity studies resulting in selection of SPI-1865 (14) as a preclinical development candidate.


Assuntos
Azetidinas/farmacologia , Produtos Biológicos/farmacologia , Citocromo P-450 CYP3A/metabolismo , Esteroides/farmacologia , Animais , Azetidinas/química , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Conformação Molecular , Ratos , Ratos Sprague-Dawley , Esteroides/química , Relação Estrutura-Atividade
20.
Lipids ; 49(11): 1143-50, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25227993

RESUMO

Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.


Assuntos
Ésteres/análise , Ácidos Graxos/análise , Lipídeos/análise , Asas de Animais/química , Fatores Etários , Animais , Quirópteros/classificação , Ésteres do Colesterol/análise , Ésteres do Colesterol/química , Ésteres/química , Ácidos Graxos/química , Ácidos Graxos não Esterificados/análise , Ácidos Graxos não Esterificados/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glicolipídeos/análise , Glicolipídeos/química , Lipídeos/química , Sebo/química , Sebo/citologia , Especificidade da Espécie , Esqualeno/análise , Esqualeno/química , Esteróis/análise , Esteróis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA