Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 368(1): 135-144, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28070636

RESUMO

Osteoarthritis is a degenerative joint disease caused by excessive death of chondrocytes and loss of the extracellular matrix (ECM) in articular cartilage. We previously reported that reactive oxygen species (ROS) generated by the NADPH oxidase (NOX) isoform NOX-2 are involved in chondrocyte death induced by interleukin-1ß (IL-1ß). In this study, we investigate the role of NOX-2 in the production and degradation of ECM by chondrocytes. Although IL-1ß lowered the mRNA expression of type II collagen (Col2a1) and aggrecan (Acan) in mouse chondrocyte-like ATDC5 cells, RNA silencing of Nox2 did not change the mRNA expression of these major components of the ECM of cartilage. Hence, NOX-2 is not involved in the IL-1ß-induced suppression of ECM production. On the other hand, the NOX inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), the ROS scavenger N-acetylcysteine and an antisense oligodeoxynucleotide for Nox2 prevented the loss of proteoglycan induced by IL-1ß in highly differentiated ATDC5 cells. Furthermore, AEBSF did not affect the expression of hyaluronidase-1 and -2, whereas it suppressed hyaluronidase activity in culture medium. IL-1ß-induced intra- and extracellular acidification was also suppressed by AEBSF, as was the antisense oligodeoxynucleotide for Nox2. Since hyaluronidase activity is known to be higher under acidic conditions, NOX-2 probably contributes to ECM loss by the activation of hyaluronidase through acidification.


Assuntos
Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Interleucina-1beta/farmacologia , NADPH Oxidases/metabolismo , Acetilcisteína/farmacologia , Ácidos/metabolismo , Agrecanas/genética , Agrecanas/metabolismo , Células Cultivadas , Condrócitos/efeitos dos fármacos , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Meios de Cultura/farmacologia , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , Concentração de Íons de Hidrogênio , Proteoglicanas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfonas/farmacologia
2.
J Negat Results Biomed ; 13: 18, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25495344

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is an inflammatory disease that leads to destruction of both articular cartilage and bone tissues. In rheumatic joints, synoviocytes and T-lymphocytes as well as bone cells produce the receptor activator of nuclear factor κ-B (RANK) ligand (RANKL), which binds to RANK on the surface of osteoclasts and their precursor cells to induce differentiation and activation of osteoclasts. Hence, inhibition of RANKL may be a promising approach to suppress osteolysis in RA. On the other hand, RANKL production by lymphocytes indicates the possibility that its inhibition would be effective to suppress inflammation in RA. In addition, it has been reported that cathepsin K, a predominant cysteine protease in osteoclasts, is involved in cartilage destruction in RA model mice. Here, we evaluated the effects of an anti-RANKL antibody on inflammation in footpads and degradation of articular cartilage in RA model mice. RESULTS: We induced arthritis in mice by injection of anti-type II collagen antibodies and lipopolysaccharide (LPS). Inhibition of RANKL by an anti-RANKL antibody (OYC1, Oriental Yeast, Tokyo, Japan) was confirmed by increased bone volume in the metaphysis of tibias. Swelling in either limb until day 14 was seen in 5 of 6 mice injected with anti-collagen antibodies and LPS without treatment with OYC1, while that was seen in 4 of 5 mice treated with OYC1. The average arthritis scores on day 14 in those groups were 2.17 and 3.00, respectively, indicating that OYC1 did not ameliorate inflammation in the limbs. Histological analyses indicated that OYC1 does not protect articular cartilage from destruction in mice with arthritis. CONCLUSIONS: Our present study failed to show the effectiveness of an anti-RANKL antibody to ameliorate inflammation in the limbs or protect articular cartilage from degradation in a collagen antibody-induced arthritis mouse model.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Cartilagem/patologia , Ligante RANK/uso terapêutico , Animais , Artrite Experimental/imunologia , Cartilagem/efeitos dos fármacos , Cartilagem/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Ligante RANK/farmacologia , Distribuição Aleatória , Resultado do Tratamento
3.
Calcif Tissue Int ; 91(1): 88-96, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22644325

RESUMO

Bone morphogenetic proteins (BMPs) control the expressions of many genes involved in bone formation. On the basis of our hypothesis that BMP2 stimulation-regulated gene expression plays a critical role in osteoblast differentiation, we performed genome-wide screening of messenger RNA from BMP2-treated and -untreated C2C12 cells using a DNA microarray technique. We found that the expressions of Gremlin1 and Gremlin2, which are known BMP antagonists, were bidirectionally regulated by BMP2. Gremlin1 was down-regulated by BMP2, while Gremlin2 was up-regulated in both time- and dose-dependent manners. Ablation of Gremlin1 or Gremlin2 enhanced osteoblast differentiation induced by BMP2. On the other hand, treatment with recombinant Gremlin1 inhibited BMP2-induced osteoblast differentiation. Furthermore, treatment with Smad4 siRNA and the p38 MAPK inhibitor SB203580 suppressed BMP2-induced Gremlin2 gene expression. The differential regulation of Gremlin1 and Gremlin2 gene expressions by BMP2 may explain the critical function of these genes during osteoblast differentiation.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Osteoblastos/citologia , Proteínas/genética , Animais , Proteína Morfogenética Óssea 2/antagonistas & inibidores , Proteína Morfogenética Óssea 2/genética , Células Cultivadas , Citocinas , Regulação da Expressão Gênica , Camundongos , Osteoblastos/metabolismo , Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteína Smad4/genética , Proteína Smad4/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA