Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35507386

RESUMO

Food intake behavior is regulated by a network of appetite-inducing and appetite-suppressing neuronal populations throughout the brain. The parasubthalamic nucleus (PSTN), a relatively unexplored population of neurons in the posterior hypothalamus, has been hypothesized to regulate appetite due to its connectivity with other anorexigenic neuronal populations and because these neurons express Fos, a marker of neuronal activation, following a meal. However, the individual cell types that make up the PSTN are not well characterized, nor are their functional roles in food intake behavior. Here, we identify and distinguish between two discrete PSTN subpopulations, those that express tachykinin-1 (PSTNTac1 neurons) and those that express corticotropin-releasing hormone (PSTNCRH neurons), and use a panel of genetically encoded tools in mice to show that PSTNTac1 neurons play an important role in appetite suppression. Both subpopulations increase activity following a meal and in response to administration of the anorexigenic hormones amylin, cholecystokinin (CCK), and peptide YY (PYY). Interestingly, chemogenetic inhibition of PSTNTac1, but not PSTNCRH neurons, reduces the appetite-suppressing effects of these hormones. Consistently, optogenetic and chemogenetic stimulation of PSTNTac1 neurons, but not PSTNCRH neurons, reduces food intake in hungry mice. PSTNTac1 and PSTNCRH neurons project to distinct downstream brain regions, and stimulation of PSTNTac1 projections to individual anorexigenic populations reduces food consumption. Taken together, these results reveal the functional properties and projection patterns of distinct PSTN cell types and demonstrate an anorexigenic role for PSTNTac1 neurons in the hormonal and central regulation of appetite.


Assuntos
Regulação do Apetite , Apetite , Animais , Hormônio Liberador da Corticotropina/metabolismo , Ingestão de Alimentos/fisiologia , Camundongos , Neurônios/fisiologia , Optogenética
2.
Diabetes ; 68(12): 2210-2222, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31530579

RESUMO

Melanin-concentrating hormone (MCH) is an important regulator of food intake, glucose metabolism, and adiposity. However, the mechanisms mediating these actions remain largely unknown. We used pharmacological and genetic approaches to show that the sirtuin 1 (SIRT1)/FoxO1 signaling pathway in the hypothalamic arcuate nucleus (ARC) mediates MCH-induced feeding, adiposity, and glucose intolerance. MCH reduces proopiomelanocortin (POMC) neuronal activity, and the SIRT1/FoxO1 pathway regulates the inhibitory effect of MCH on POMC expression. Remarkably, the metabolic actions of MCH are compromised in mice lacking SIRT1 specifically in POMC neurons. Of note, the actions of MCH are independent of agouti-related peptide (AgRP) neurons because inhibition of γ-aminobutyric acid receptor in the ARC did not prevent the orexigenic action of MCH, and the hypophagic effect of MCH silencing was maintained after chemogenetic stimulation of AgRP neurons. Central SIRT1 is required for MCH-induced weight gain through its actions on the sympathetic nervous system. The central MCH knockdown causes hypophagia and weight loss in diet-induced obese wild-type mice; however, these effects were abolished in mice overexpressing SIRT1 fed a high-fat diet. These data reveal the neuronal basis for the effects of MCH on food intake, body weight, and glucose metabolism and highlight the relevance of SIRT1/FoxO1 pathway in obesity.


Assuntos
Adiposidade/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Intolerância à Glucose/metabolismo , Hiperfagia/metabolismo , Hormônios Hipotalâmicos/farmacologia , Melaninas/farmacologia , Neurônios/efeitos dos fármacos , Hormônios Hipofisários/farmacologia , Pró-Opiomelanocortina/metabolismo , Sirtuína 1/metabolismo , Adiposidade/fisiologia , Animais , Proteína Forkhead Box O1/genética , Intolerância à Glucose/genética , Hiperfagia/genética , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Sirtuína 1/genética
3.
Elife ; 82019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30907726

RESUMO

When presented with a choice, organisms need to assimilate internal information with external stimuli and past experiences to rapidly and flexibly optimize decisions on a moment-to-moment basis. We hypothesized that increasing hunger intensity would curb expression of social behaviors such as mating or territorial aggression; we further hypothesized social interactions, reciprocally, would influence food consumption. We assessed competition between these motivations from both perspectives of mice within a resident-intruder paradigm. We found that as hunger state escalated, resident animal social interactions with either a female or male intruder decreased. Furthermore, intense hunger states, especially those evoked via AgRP photoactivation, fundamentally altered sequences of behavioral choice; effects dependent on food availibility. Additionally, female, but not male, intrusion attenuated resident mouse feeding. Lastly, we noted environmental context-dependent gating of food intake in intruding mice, suggesting a dynamic influence of context cues on the expression of feeding behaviors.


Assuntos
Tomada de Decisões , Comportamento Alimentar , Fome , Comportamento Social , Animais , Feminino , Masculino , Camundongos , Motivação
4.
Cell Metab ; 29(3): 681-694.e5, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30472090

RESUMO

Understanding the neural framework behind appetite control is fundamental to developing effective therapies to combat the obesity epidemic. The paraventricular hypothalamus (PVH) is critical for appetite regulation, yet, the real-time, physiological response properties of PVH neurons to nutrients are unknown. Using a combination of fiber photometry, electrophysiology, immunohistochemistry, and neural manipulation strategies, we determined the population dynamics of four molecularly delineated PVH subsets implicated in feeding behavior: glucagon-like peptide 1 receptor (PVHGlp1r), melanocortin-4 receptor (PVHMc4r), oxytocin (PVHOxt), and corticotropin-releasing hormone (PVHCrh). We identified both calorie- and state-dependent sustained activity increases and decreases in PVHGlp1r and PVHCrh populations, respectively, while observing transient bulk changes of PVHMc4r, but no response in PVHOxt, neurons to food. Furthermore, we highlight the role of PVHGlp1r neurons in orchestrating acute feeding behavior, independent of the anti-obesity drug liraglutide, and demonstrate the indispensability of PVHGlp1r and PVHMc4r, but not PVHOxt or PVHCrh neurons, in body weight maintenance.


Assuntos
Regulação do Apetite/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Ingestão de Energia/fisiologia , Metabolismo Energético , Feminino , Masculino , Camundongos , Neurônios/metabolismo
5.
J Neurosci ; 36(42): 10831-10842, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27798138

RESUMO

The neural circuitry underlying mammalian reward behaviors involves several distinct nuclei throughout the brain. It is widely accepted that the midbrain dopamine (DA) neurons are critical for the reward-related behaviors. Recent studies have shown that the centromedial nucleus of the amygdala (CeMA) has a distinct role in regulating reward-related behaviors. However, the CeMA and ventromedial PFC (vmPFC) interaction in reward regulation remains poorly understood. Here, we identify and dissect a GABAergic projection that originates in the CeMA and terminates in the vmPFC (VGat-CreCeMA-vmPFC) using viral-vector-mediated, cell-type-specific optogenetic techniques in mice. Pathway-specific optogenetic activation of the VGat-CreCeMA-vmPFC circuit in awake, behaving animals produced a positive, reward-like phenotype in real-time place preference and increased locomotor activity in open-field testing. In sucrose operant conditioning, the photoactivation of these terminals increased nose-poking effort with no effect on licking behavior and robustly facilitated the extinction of operant behavior. However, photoactivation of these terminals did not induce self-stimulation in the absence of an external reward. The results described here suggest that the VGat-CreCeMA-vmPFC projection acts to modulate existing reward-related behaviors. SIGNIFICANCE STATEMENT: Many studies have shown that the interactions between the centromedial nucleus of the amygdala (CeMA) and ventromedial PFC (vmPFC) have critical roles for emotional regulation. However, most studies have associated this circuit with fear and anxiety behaviors and emphasized top-down processing from vmPFC to CeMA. Here, we provide new evidence for bottom-up CeMA to vmPFC influence on reward-related behaviors. Although previous work implicated the CeMA in incentive salience, our results isolate the investigation to a specific CeMA GABAergic projection to the vmPFC. This long-range GABAergic interaction between amygdala and frontal cortex adds a new dimension to the complex regulation of reward-related behaviors.


Assuntos
Tonsila do Cerebelo/fisiologia , Comportamento Animal/fisiologia , Córtex Pré-Frontal/fisiologia , Recompensa , Ácido gama-Aminobutírico/fisiologia , Animais , Condicionamento Operante/efeitos dos fármacos , Extinção Psicológica , Masculino , Camundongos , Atividade Motora , Vias Neurais/fisiologia , Optogenética , Autoestimulação , Sacarose/farmacologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
7.
Neuron ; 86(4): 923-935, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25937173

RESUMO

Optogenetics is now a widely accepted tool for spatiotemporal manipulation of neuronal activity. However, a majority of optogenetic approaches use binary on/off control schemes. Here, we extend the optogenetic toolset by developing a neuromodulatory approach using a rationale-based design to generate a Gi-coupled, optically sensitive, mu-opioid-like receptor, which we term opto-MOR. We demonstrate that opto-MOR engages canonical mu-opioid signaling through inhibition of adenylyl cyclase, activation of MAPK and G protein-gated inward rectifying potassium (GIRK) channels and internalizes with kinetics similar to that of the mu-opioid receptor. To assess in vivo utility, we expressed a Cre-dependent viral opto-MOR in RMTg/VTA GABAergic neurons, which led to a real-time place preference. In contrast, expression of opto-MOR in GABAergic neurons of the ventral pallidum hedonic cold spot led to real-time place aversion. This tool has generalizable application for spatiotemporal control of opioid signaling and, furthermore, can be used broadly for mimicking endogenous neuronal inhibition pathways.


Assuntos
Analgésicos Opioides/farmacologia , Comportamento Animal/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Optogenética , Receptores Opioides mu/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Células Cultivadas , Neurônios GABAérgicos/metabolismo , Ratos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA