Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(6): e0054124, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38687062

RESUMO

Lactococcus garvieae is a fish pathogen that can cause diseases in humans and cows. Two genetically related species, Lactococcus formosensis and Lactococcus petauri, may be misidentified as L. garvieae. It is unclear if these species differ in host specificity and virulence genes. This study analyzed the genomes of 120 L. petauri, 53 L. formosensis, and 39 L. garvieae isolates from various sources. The genetic diversity and virulence gene content of these isolates were compared. The results showed that 77 isolates previously reported as L. garvieae were actually L. formosensis or L. petauri. The distribution of the three species varied across different collection sources, with L. petauri being predominant in human infections, human fecal sources, and rainbow trout, while L. formosensis was more common in bovine isolates. The genetic diversity of isolates within each species was high and similar. Using a genomic clustering method, L. petauri, L. formosensis, and L. garvieae were divided into 45, 22, and 13 clusters, respectively. Most rainbow trout and human isolates of L. petauri belonged to different clusters, while L. formosensis isolates from bovine and human sources were also segregated into separate clusters. In L. garvieae, most human isolates were grouped into three clusters that also included isolates from food or other sources. Non-metric multidimensional scaling ordination revealed the differential association of 15 virulence genes, including 14 adherence genes and a bile salt hydrolase gene, with bacterial species and certain collection sources. In conclusion, this work provides evidence of host specificity among the three species. IMPORTANCE: Lactococcus formosensis and Lactococcus petauri are two newly discovered bacteria, which are closely related to Lactococcus garvieae, a pathogen that affects farmed rainbow trout, as well as causes cow mastitis and human infections. It is unclear whether the three bacteria differ in their host preference and the presence of genes that contribute to the development of disease. This study shows that L. formosensis and L. petauri were commonly misidentified as L. garvieae. The three bacteria showed different distribution patterns across various sources. L. petauri was predominantly found in human infections and rainbow trout, while L. formosensis was more commonly detected in cow mastitis. Fifteen genes displayed a differential distribution among the three bacteria from certain sources, indicating a genetic basis for the observed host preference. This work indicates the importance of differentiating the three bacteria in diagnostic laboratories for surveillance and outbreak investigation purposes.


Assuntos
Variação Genética , Genoma Bacteriano , Especificidade de Hospedeiro , Lactococcus , Animais , Lactococcus/genética , Lactococcus/classificação , Lactococcus/isolamento & purificação , Humanos , Bovinos , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Fatores de Virulência/genética , Filogenia , Oncorhynchus mykiss/microbiologia , Genômica , Virulência/genética , Fezes/microbiologia
2.
Microorganisms ; 11(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36985239

RESUMO

Typhoid fever is a notable disease in Hong Kong. We noticed two local cases of typhoid fever caused by Salmonella Typhi within a two-week period in late 2022, which had no apparent epidemiological linkage except for residing in the same region of Hong Kong. A phylogenetic study of Salmonella Typhi isolates from Hong Kong Island from 2020 to 2022 was performed, including a whole-genome analysis, the typing of plasmids, and the analysis of antibiotic-resistance genes (ARGs), to identify the dominant circulating strain and the spread of ARGs. A total of seven isolates, from six local cases and an imported case, were identified from positive blood cultures in two hospitals in Hong Kong. Five antibiotic-sensitive strains of genotype 3.2.2 were found, which clustered with another 30 strains originating from Southeast Asia. Whole-genome sequencing revealed clonal transmission between the two index cases. The remaining two local cases belong to genotype 2.3.4 and genotype 4.3.1.1.P1 (also known as the H58 lineage). The genotype 4.3.1.1.P1 strain has an extensively drug-resistant (XDR) phenotype (co-resistance to ampicillin, chloramphenicol, ceftriaxone, ciprofloxacin, and co-trimoxazole). Although the majority of local strains belong to the non-H58 genotype 3.2.2 with a low degree of antibiotic resistance, the introduction of XDR strains with the global dissemination of the H58 lineage remains a concern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA