Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(1): 101201, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38374962

RESUMO

Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal disease caused by iduronate-2-sulfatase (IDS) deficiency, leading to accumulation of glycosaminoglycans (GAGs) and the emergence of progressive disease. Enzyme replacement therapy is the only currently approved treatment, but it leaves neurological disease unaddressed. Cerebrospinal fluid (CSF)-directed administration of AAV9.CB7.hIDS (RGX-121) is an alternative treatment strategy, but it is unknown if this approach will affect both neurologic and systemic manifestations. We compared the effectiveness of intrathecal (i.t.) and intravenous (i.v.) routes of administration (ROAs) at a range of vector doses in a mouse model of MPS II. While lower doses were completely ineffective, a total dose of 1 × 109 gc resulted in appreciable IDS activity levels in plasma but not tissues. Total doses of 1 × 1010 and 1 × 1011 gc by either ROA resulted in supraphysiological plasma IDS activity, substantial IDS activity levels and GAG reduction in nearly all tissues, and normalized zygomatic arch diameter. In the brain, a dose of 1 × 1011 gc i.t. achieved the highest IDS activity levels and the greatest reduction in GAG content, and it prevented neurocognitive deficiency. We conclude that a dose of 1 × 1010 gc normalized metabolic and skeletal outcomes, while neurologic improvement required a dose of 1 × 1011 gc, thereby suggesting the prospect of a similar direct benefit in humans.

3.
Mol Genet Metab ; 138(4): 107539, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37023503

RESUMO

Mucopolysaccharidosis type II (Hunter syndrome, MPS II) is an inherited X-linked recessive disease caused by deficiency of iduronate-2-sulfatase (IDS), resulting in the accumulation of the glycosaminoglycans (GAG) heparan and dermatan sulfates. Mouse models of MPS II have been used in several reports to study disease pathology and to conduct preclinical studies for current and next generation therapies. Here, we report the generation and characterization of an immunodeficient mouse model of MPS II, where CRISPR/Cas9 was employed to knock out a portion of the murine IDS gene on the NOD/SCID/Il2rγ (NSG) immunodeficient background. IDS-/- NSG mice lacked detectable IDS activity in plasma and all analyzed tissues and exhibited elevated levels of GAGs in those same tissues and in the urine. Histopathology revealed vacuolized cells in both the periphery and CNS of NSG-MPS II mice. This model recapitulates skeletal disease manifestations, such as increased zygomatic arch diameter and decreased femur length. Neurocognitive deficits in spatial memory and learning were also observed in the NSG-MPS II model. We anticipate that this new immunodeficient model will be appropriate for preclinical studies involving xenotransplantation of human cell products intended for the treatment of MPS II.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Humanos , Animais , Camundongos , Mucopolissacaridose II/terapia , Camundongos Endogâmicos NOD , Camundongos SCID , Iduronato Sulfatase/genética , Glicosaminoglicanos
4.
Hum Gene Ther ; 33(23-24): 1279-1292, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36226412

RESUMO

Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an X-linked recessive lysosomal disease caused by deficiency of iduronate-2-sulfatase (IDS). The absence of IDS results in the accumulation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate. Currently, the only approved treatment option for MPS II is enzyme replacement therapy (ERT), Elaprase. However, ERT is demanding for the patient and does not ameliorate neurological manifestations of the disease. Using an IDS-deficient mouse model that phenocopies the human disease, we evaluated hematopoietic stem and progenitor cells (HSPCs) transduced with a lentiviral vector (LVV) carrying a codon-optimized human IDS coding sequence regulated by a ubiquitous MNDU3 promoter (MNDU3-IDS). Mice treated with MNDU3-IDS LVV-transduced cells showed supraphysiological levels of IDS enzyme activity in plasma, peripheral blood mononuclear cells, and in most analyzed tissues. These enzyme levels were sufficient to normalize GAG storage in analyzed tissues. Importantly, IDS levels in the brains of MNDU3-IDS-engrafted animals were restored to 10-20% than that of wild-type mice, sufficient to normalize GAG content and prevent emergence of cognitive deficit as evaluated by neurobehavioral testing. These results demonstrate the potential effectiveness of ex vivo MNDU3-IDS LVV-transduced HSPCs for treatment of MPS II.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Animais , Camundongos , Humanos , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Leucócitos Mononucleares , Iduronato Sulfatase/genética , Terapia de Reposição de Enzimas , Modelos Animais de Doenças , Células-Tronco Hematopoéticas
5.
Sci Rep ; 12(1): 7985, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568699

RESUMO

Adrenoleukodystrophy (ALD) is an X-linked peroxisomal disease caused by a mutation in the ABCD1 gene, producing mutations in the very long chain fatty acid transporter, ALD protein. Cerebral ALD (cALD) is a severe phenotype of ALD with neuroinflammation and neurodegeneration. Elevated levels of Glycoprotein Nonmetastatic Melanoma Protein B (GNMPB) have been recently documented in neurodegenerative diseases such as Alzheimer's disease, Multiple Sclerosis and Amyotrophic Lateral Sclerosis. Our objective was to measure the levels cerebral spinal fluid (CSF) GNMPB in cALD patients to determine if GNMPB could be a potential biomarker in tracking cALD disease progression. CSF GNMPB levels were significantly higher in cALD patients versus controls (2407 ± 1672 pg/mL vs. 639.5 ± 404 pg/mL, p = 0.0009). We found a positive correlation between CSF GNMPB and MRI disease severity score levels (R2 = 0.3225, p < 0.0001) as well as the gadolinium intensity score (p = 0.0204). Boys with more severe neurologic deficits also had higher levels of CSF GNMPB (p < 0.0001). A positive correlation was shown between CSF GNMPB and another biomarker, chitotriosidase (R2 = 0.2512, p = 0.0244). These data show that GNMPB could be a potential biomarker of cALD disease state and further studies should evaluate it as a predictor of the disease progression.


Assuntos
Adrenoleucodistrofia , Melanoma , Glicoproteínas de Membrana , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Biomarcadores/metabolismo , Progressão da Doença , Humanos , Glicoproteínas de Membrana/metabolismo , Receptores Fc
6.
Blood Adv ; 5(18): 3609-3622, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34448828

RESUMO

Hematopoietic cell homing after hematopoietic cell transplant (HCT) is governed by several pathways involving marrow niche cells that are evoked after pre-HCT conditioning. To understand the factors that play a role in homing, we performed expression analysis on zebrafish marrow niche cells following conditioning. We determined that the noncollagenous protein extracellular matrix related protein dermatopontin (Dpt) was upregulated sevenfold in response to irradiation. Studies in mice revealed DPT induction with radiation and lipopolysaccharide exposure. Interestingly, we found that coincubation of zebrafish or murine hematopoietic cells with recombinant DPT impedes hematopoietic stem and progenitor cell homing by 50% and 86%, respectively. Similarly, this translated into a 24% reduction in long-term engraftment (vs control; P = .01). We found DPT to interact with VLA-4 and block hematopoietic cell-endothelial cell adhesion and transendothelial migration. Finally, a DPT-knockout mouse displayed a 60% increase in the homing of hematopoietic cells vs wild-type mice (P = .03) with a slight improvement in long-term lin-SCA1+cKIT+-SLAM cell engraftment (twofold; P = .04). These data show that the extracellular matrix-related protein DPT increases with radiation and transiently impedes the transendothelial migration of hematopoietic cells to the marrow.


Assuntos
Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Animais , Adesão Celular , Células-Tronco Hematopoéticas , Camundongos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA