Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Blood Adv ; 8(10): 2552-2564, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38537079

RESUMO

ABSTRACT: Malaria is a highly oxidative parasitic disease in which anemia is the most common clinical symptom. A major contributor to the malarial anemia pathogenesis is the destruction of bystander, uninfected red blood cells (RBCs). Metabolic fluctuations are known to occur in the plasma of individuals with acute malaria, emphasizing the role of metabolic changes in disease progression and severity. Here, we report conditioned medium from Plasmodium falciparum culture induces oxidative stress in uninfected, catalase-depleted RBCs. As cell-permeable precursors to glutathione, we demonstrate the benefit of pre-exposure to exogenous glutamine, cysteine, and glycine amino acids for RBCs. Importantly, this pretreatment intrinsically prepares RBCs to mitigate oxidative stress.


Assuntos
Aminoácidos , Eritrócitos , Estresse Oxidativo , Plasmodium falciparum , Plasmodium falciparum/efeitos dos fármacos , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Eritrócitos/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Aminoácidos/metabolismo , Malária Falciparum/prevenção & controle , Malária Falciparum/parasitologia
3.
Cell Rep ; 43(3): 113897, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38493478

RESUMO

Chromatin structure is regulated through posttranslational modifications of histone variants that modulate transcription. Although highly homologous, histone variants display unique amino acid sequences associated with specific functions. Abnormal incorporation of histone variants contributes to cancer initiation, therapy resistance, and metastasis. This study reports that, among its biologic functions, histone H3.1 serves as a chromatin redox sensor that is engaged by mitochondrial H2O2. In breast cancer cells, the oxidation of H3.1Cys96 promotes its eviction and replacement by H3.3 in specific promoters. We also report that this process facilitates the opening of silenced chromatin domains and transcriptional activation of epithelial-to-mesenchymal genes associated with cell plasticity. Scavenging nuclear H2O2 or amino acid substitution of H3.1(C96S) suppresses plasticity, restores sensitivity to chemotherapy, and induces remission of metastatic lesions. Hence, it appears that increased levels of H2O2 produced by mitochondria of breast cancer cells directly promote redox-regulated H3.1-dependent chromatin remodeling involved in chemoresistance and metastasis.


Assuntos
Neoplasias da Mama , Histonas , Humanos , Feminino , Histonas/metabolismo , Cromatina , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Resistência a Múltiplos Medicamentos , Neoplasias da Mama/genética
4.
Acta Physiol (Oxf) ; 240(4): e14123, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38459766

RESUMO

AIMS: This study aimed to characterize the properties of locus coeruleus (LC) noradrenergic neurons in male and female mice. We also sought to investigate sex-specific differences in membrane properties, action potential generation, and protein expression profiles to understand the mechanisms underlying neuronal excitability variations. METHODS: Utilizing a genetic mouse model by crossing Dbhcre knock-in mice with tdTomato Ai14 transgenic mice, LC neurons were identified using fluorescence microscopy. Neuronal functional properties were assessed using patch-clamp recordings. Proteomic analyses of individual LC neuron soma was conducted using mass spectrometry to discern protein expression profiles. Data are available via ProteomeXchange with identifier PXD045844. RESULTS: Female LC noradrenergic neurons displayed greater membrane capacitance than those in male mice. Male LC neurons demonstrated greater spontaneous and evoked action potential generation compared to females. Male LC neurons exhibited a lower rheobase and achieved higher peak frequencies with similar current injections. Proteomic analysis revealed differences in protein expression profiles between sexes, with male mice displaying a notably larger unique protein set compared to females. Notably, pathways pertinent to protein synthesis, degradation, and recycling, such as EIF2 and glucocorticoid receptor signaling, showed reduced expression in females. CONCLUSIONS: Male LC noradrenergic neurons exhibit higher intrinsic excitability compared to those from females. The discernible sex-based differences in excitability could be ascribed to varying protein expression profiles, especially within pathways that regulate protein synthesis and degradation. This study lays the groundwork for future studies focusing on the interplay between proteomics and neuronal function examined in individual cells.


Assuntos
Neurônios Adrenérgicos , Locus Cerúleo , Proteína Vermelha Fluorescente , Camundongos , Feminino , Masculino , Animais , Locus Cerúleo/metabolismo , Caracteres Sexuais , Proteômica , Camundongos Transgênicos , Espectrometria de Massas
5.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405813

RESUMO

Chronic pain is a significant public health issue. Current treatments have limited efficacy and significant side effects, warranting research on alternative strategies for pain management. One approach involves using small extracellular vesicles (sEVs) to transport beneficial biomolecular cargo to aid pain resolution. Exosomes are 30-150 nm sEVs that can carry RNAs, proteins, and lipid mediators to recipient cells via circulation. Exosomes can be beneficial or harmful depending on their source and contents. To investigate the short and long-term effects of mouse serum-derived sEVs in pain modulation, sEVs from naïve control or spared nerve injury (SNI) model donor mice were injected intrathecally into naïve recipient mice. Basal mechanical thresholds transiently increased in recipient mice. This effect was mediated by opioid signaling as this outcome was blocked by naltrexone. Mass Spectrometry of sEVs detected endogenous opioid peptide leu-enkephalin. A single prophylactic intrathecal injection of sEVs two weeks prior to induction of the pain model in recipient mice delayed mechanical allodynia in SNI model mice and accelerated recovery from inflammatory pain after complete Freund's adjuvant (CFA) injection. ChipCytometry of spinal cord and dorsal root ganglion (DRG) from sEV treated mice showed that prophylactic sEV treatment reduced the number of natural killer (NK) and NKT cells in spinal cord and increased CD206+ anti-inflammatory macrophages in (DRG) after CFA injection. Further characterization of sEVs showed the presence of immune markers suggesting that sEVs can exert immunomodulatory effects in recipient mice to promote the resolution of inflammatory pain. Collectively, these studies demonstrate multiple mechanisms by which sEVs can attenuate pain.

6.
J Extracell Vesicles ; 13(1): e12398, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38191961

RESUMO

Brain-derived extracellular vesicles (EVs) play an active role in Alzheimer's disease (AD), relaying important physiological information about their host tissues. The internal cargo of EVs is protected from degradation, making EVs attractive AD biomarkers. However, it is unclear how circulating EVs relate to EVs isolated from disease-vulnerable brain regions. We developed a novel method for collecting EVs from the hippocampal interstitial fluid (ISF) of live mice. EVs (EVISF ) were isolated via ultracentrifugation and characterized by nanoparticle tracking analysis, immunogold labelling, and flow cytometry. Mass spectrometry and proteomic analyses were performed on EVISF cargo. EVISF were 40-150 nm in size and expressed CD63, CD9, and CD81. Using a model of cerebral amyloidosis (e.g., APPswe, PSEN1dE9 mice), we found protein concentration increased but protein diversity decreased with Aß deposition. Genotype, age, and Aß deposition modulated proteostasis- and immunometabolic-related pathways. Changes in the microglial EVISF proteome were sexually dimorphic and associated with a differential response of plaque associated microglia. We found that female APP/PS1 mice have more amyloid plaques, less plaque associated microglia, and a less robust- and diverse- EVISF microglial proteome. Thus, in vivo microdialysis is a novel technique for collecting EVISF and offers a unique opportunity to explore the role of EVs in AD.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Placa Aterosclerótica , Feminino , Animais , Camundongos , Proteoma , Líquido Extracelular , Microglia , Proteômica , Hipocampo
7.
Ther Adv Med Oncol ; 16: 17588359231217959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38249330

RESUMO

Background: Immunotherapy with programmed death receptor-1 (PD-1) inhibitors, as a single agent or in combination with chemotherapy, is the standard first-line treatment for recurrent or metastatic head and neck squamous cell cancer (R/M HNSCC). Unfortunately, there is no established second-line treatment for the many patients who fail immunotherapy. Cetuximab is the only targeted therapy approved in HNSCC but historically has a low response rate of 13%. Objectives: We hypothesize that cetuximab monotherapy following an immune checkpoint inhibitor (ICI) will lead to increased efficacy due to a potential synergistic effect on the antitumor immune response, as a result of activation effects of both treatments on innate and adaptative immune responses. To the authors' knowledge, this is the only ongoing prospective clinical study that evaluates the combination of cetuximab and ICIs administered sequentially. Methods and analysis: In this non-randomized, open-label, phase II trial, 30 patients with R/M HNSCC who have previously failed or could not tolerate a PD-1 inhibitor as a single agent or in combination with chemotherapy will subsequently be treated with cetuximab monotherapy. Outcomes of interest include overall response rate, duration of response, progression-free survival, overall survival, and treatment toxicity, as well as treatment outcome measured by a patient-reported outcome questionnaire. Saliva and blood will be collected for correlative studies to investigate the immune response status at the end of therapy with an ICI and the effect of cetuximab on the antitumor immune response. The results will be correlated with the response to cetuximab and the time window between the last administration of an ICI and the loading dose of cetuximab. The clinical study is actively recruiting. Ethics: This study was approved by the Wake Forest Comprehensive Cancer Center Institutional Review Board: IRB00065239. Clinical trial registration: This study is registered on ClinicalTrials.gov: NCT04375384.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA