Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38760173

RESUMO

Dynamic rearrangements of the F-actin cytoskeleton are a hallmark of tumor metastasis. Thus, proteins that govern F-actin rearrangements are of major interest for understanding metastasis and potential therapies. We hypothesized that the unique F-actin binding and bundling protein SWAP-70 contributes importantly to metastasis. Orthotopic, ectopic, and short-term tail vein injection mouse breast and lung cancer models revealed a strong positive dependence of lung and bone metastasis on SWAP-70. Breast cancer cell growth, migration, adhesion, and invasion assays revealed SWAP-70's key role in these metastasis-related cell features and the requirement for SWAP-70 to bind F-actin. Biophysical experiments showed that tumor cell stiffness and deformability are negatively modulated by SWAP-70. Together, we present a hitherto undescribed, unique F-actin modulator as an important contributor to tumor metastasis.


Assuntos
Actinas , Neoplasias da Mama , Neoplasias Pulmonares , Proteínas dos Microfilamentos , Metástase Neoplásica , Animais , Actinas/metabolismo , Camundongos , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Movimento Celular/genética , Citoesqueleto de Actina/metabolismo , Proliferação de Células/genética , Adesão Celular/genética , Ligação Proteica
2.
ACS Nano ; 17(17): 17451-17467, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37643371

RESUMO

Nanoparticles (NPs) elicit sterile inflammation, but the underlying signaling pathways are poorly understood. Here, we report that human monocytes are particularly vulnerable to amorphous silica NPs, as evidenced by single-cell-based analysis of peripheral blood mononuclear cells using cytometry by time-of-flight (CyToF), while silane modification of the NPs mitigated their toxicity. Using human THP-1 cells as a model, we observed cellular internalization of silica NPs by nanoscale secondary ion mass spectrometry (nanoSIMS) and this was confirmed by transmission electron microscopy. Lipid droplet accumulation was also noted in the exposed cells. Furthermore, time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed specific changes in plasma membrane lipids, including phosphatidylcholine (PC) in silica NP-exposed cells, and subsequent studies suggested that lysophosphatidylcholine (LPC) acts as a cell autonomous signal for inflammasome activation in the absence of priming with a microbial ligand. Moreover, we found that silica NPs elicited NLRP3 inflammasome activation in monocytes, whereas cell death transpired through a non-apoptotic, lipid peroxidation-dependent mechanism. Together, these data further our understanding of the mechanism of sterile inflammation.


Assuntos
Inflamassomos , Nanopartículas , Humanos , Leucócitos Mononucleares , Espectrometria de Massa de Íon Secundário , Inflamação , Dióxido de Silício/farmacologia
3.
Biomaterials ; 297: 122105, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37031548

RESUMO

The WNT signaling pathway is a central regulator of bone development and regeneration. Functional alterations of WNT ligands and inhibitors are associated with a variety of bone diseases that affect bone fragility and result in a high medical and socioeconomic burden. Hence, this cellular pathway has emerged as a novel target for bone-protective therapies, e.g. in osteoporosis. Here, we investigated glycosaminoglycan (GAG) recognition by Dickkopf-1 (DKK1), a potent endogenous WNT inhibitor, and the underlying functional implications in order to develop WNT signaling regulators. In a multidisciplinary approach we applied in silico structure-based de novo design strategies and molecular dynamics simulations combined with synthetic chemistry and surface plasmon resonance spectroscopy to Rationally Engineer oligomeric Glycosaminoglycan derivatives (REGAG) with improved neutralizing properties for DKK1. In vitro and in vivo assays show that the GAG modification to obtain REGAG translated into increased WNT pathway activity and improved bone regeneration in a mouse calvaria defect model with critical size bone lesions. Importantly, the developed REGAG outperformed polymeric high-sulfated hyaluronan (sHA3) in enhancing bone healing up to 50% due to their improved DKK1 binding properties. Thus, rationally engineered GAG variants may represent an innovative strategy to develop novel therapeutic approaches for regenerative medicine.


Assuntos
Doenças Ósseas , Regeneração Óssea , Glicosaminoglicanos , Peptídeos e Proteínas de Sinalização Intercelular , Animais , Camundongos , Osso e Ossos/metabolismo , Glicosaminoglicanos/metabolismo , Via de Sinalização Wnt
4.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163219

RESUMO

Prostate cancer (PCa) is the most frequent malignancy in older men with a high propensity for bone metastases. Characteristically, PCa causes osteosclerotic lesions as a result of disrupted bone remodeling. Extracellular vesicles (EVs) participate in PCa progression by conditioning the pre-metastatic niche. However, how EVs mediate the cross-talk between PCa cells and osteoprogenitors in the bone microenvironment remains poorly understood. We found that EVs derived from murine PCa cell line RM1-BM increased metabolic activity, vitality, and cell proliferation of osteoblast precursors by >60%, while significantly impairing mineral deposition (-37%). The latter was further confirmed in two complementary in vivo models of ossification. Accordingly, gene and protein set enrichments of osteoprogenitors exposed to EVs displayed significant downregulation of osteogenic markers and upregulation of proinflammatory factors. Additionally, transcriptomic profiling of PCa-EVs revealed the abundance of three microRNAs, miR-26a-5p, miR-27a-3p, and miR-30e-5p involved in the suppression of BMP-2-induced osteogenesis in vivo, suggesting the critical role of these EV-derived miRNAs in PCa-mediated suppression of osteoblast activity. Taken together, our results indicate the importance of EV cargo in cancer-bone cross-talk in vitro and in vivo and suggest that exosomal miRNAs may contribute to the onset of osteosclerotic bone lesions in PCa.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/genética , Osteoblastos/fisiologia , Neoplasias da Próstata/genética , Animais , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Comunicação Celular , Linhagem Celular Tumoral , Proliferação de Células , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/genética , Vesículas Extracelulares/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Masculino , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Osteogênese , Transcriptoma/genética , Microambiente Tumoral
5.
Front Immunol ; 12: 665208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149700

RESUMO

Bone marrow adipose tissue (BMAT) has recently been recognized as a distinct fat depot with endocrine functions. However, if and how it is regulated by chronic inflammation remains unknown. Here, we investigate the amount of white fat and BMAT in HLA-B27 transgenic rats and curdlan-challenged SKG mice, two well-established models of chronic inflammatory spondyloarthritis (SpA). Subcutaneous and gonadal white adipose tissue and BMAT was reduced by 65-70% and by up to 90% in both experimental models. Consistently, B27 rats had a 2-3-fold decrease in the serum concentrations of the adipocyte-derived cytokines adiponectin and leptin as well as a 2-fold lower concentration of triglycerides. The bone marrow of B27 rats was further characterized by higher numbers of neutrophils, lower numbers of erythroblast precursors, and higher numbers of IL-17 producing CD4+ T cells. IL-17 concentration was also increased in the serum of B27 rats. Using a cell culture model, we show that high levels of IL-17 in the serum of B27 rats negatively impacted adipogenesis (-76%), an effect that was reversed in the presence of neutralizing anti-IL-17 antibody. In summary, these findings show BMAT is severely reduced in two experimental models of chronic inflammatory SpA and suggest that IL-17 is involved in this process.


Assuntos
Tecido Adiposo/patologia , Medula Óssea/patologia , Antígeno HLA-B27/genética , Interleucina-17/sangue , Espondilartrite/patologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Espondilartrite/genética , Espondilartrite/imunologia
6.
Bone ; 152: 116074, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34174502

RESUMO

Mechanosensitive osteocytes are central regulators of bone resorption and formation. However, during the formation of bone metastases, which arise as consequences of breast and prostate cancer and skew homeostatic bone remodeling to favor osteolytic, osteosclerotic or mixed lesions, only a paucity of data exists on tumor-associated osteocyte interaction. Herein, we used a suite of high-resolution imaging and histological techniques to evaluate the effect of osteotropic cancer on cortical bone microarchitecture. Confocal imaging highlighted a direct contact between tumor cells residing in the bone marrow and osteocytes. High-resolution microcomputed tomography revealed a 10-12% larger osteocyte lacuna volume in the presence of tumor cells at day 21 after intratibial injection of EO771-Luc breast and RM1-Luc prostate cancer cells. The 3D representative of the spatial distribution of cortical bone microporosity showed i) a regional accumulation of vascular canals and large lacunae with low connectivity in osteosclerotic regions of interest and ii) an absence of vascular canals and large lacunae in osteolytic regions. These findings pinpoint the relationship between the presence of tumor cells in the bone marrow microenvironment and osteocyte lacunar characteristics and cortical bone blood vessel structure.


Assuntos
Neoplasias , Osteócitos , Animais , Osso e Ossos , Osso Cortical/diagnóstico por imagem , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Microtomografia por Raio-X
7.
FEBS Open Bio ; 11(4): 1186-1194, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33639039

RESUMO

Prostate cancer (PCa) is a major cause of cancer-related death in men. Tumor-derived protein derived from Wnt5A gene (WNT5A) plays an important role in primary and metastatic PCa. Surrounding stroma cells also produce WNT5A, which may modulate the biology of PCa. Here, we assessed the role of stroma-derived WNT5A (stWNT5A) in primary PCa. A tissue microarray of samples obtained from 400 patients who underwent radical prostatectomy and control samples from 41 patients with benign prostate hyperplasia (BPH) was immunohistochemically assessed for expression of stWNT5A. The cores were scored for staining intensity: 0 (no staining), 1 (weak), 2 (moderate), or 3 (strong) and the stained stromal surface area: 0 (0%), 1 (1-25%), 2 (26-50%), 3 (51-75%), or 4 (76-100%). Gleason Score (GS) and TNM-stage were assessed by stratifying the cohort into high-risk (≥ pT3, pN1, GS ≥ 8) and non-high-risk patients. Ki67 and TUNEL assays were performed to assess proliferation and apoptosis. Expression of stWNT5A in BPH and tumor-free control samples was 1.2-fold higher compared to tumor samples (P < 0.001). Non-high-risk patients had a higher stWNT5A score than high-risk patients (P < 0.05). stWNT5A expression was not correlated with overall and cancer-specific survival. Proliferation (r2  = 0.038, P < 0.001) and apoptosis (r2  = 0.277, P < 0.001) negatively correlated with stWNT5A expression. In summary, we show that expression of stWNT5A is higher in benign tissue and non-high-risk PCa. Stroma-derived Wnt signaling and tumor-derived Wnt may differentially impact on tumor behavior. Future studies are warranted to dissect the Wnt profile in tumor vs. surrounding stroma tissues.


Assuntos
Biomarcadores Tumorais , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Células Estromais/metabolismo , Proteína Wnt-5a/metabolismo , Idoso , Fibroblastos Associados a Câncer , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/mortalidade , Análise Serial de Tecidos , Proteína Wnt-5a/genética
8.
Trends Cancer ; 7(2): 112-121, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33274720

RESUMO

Patients with advanced prostate cancer (PCa) frequently develop skeletal metastases that are associated with fractures, disability, and increased mortality. Within the bone metastatic niche, mutual interactions between tumor cells and osteoblasts have been proposed as major contributors of osteotropism by PCa. Here, we highlight the emerging role of PCa-derived extracellular vesicles (EVs) in reprogramming osteoblasts and support of premetastatic niche formation. We also develop the concept of cancer-associated osteoblasts (CAOs) and outline the potential of PCa cells to acquire an osteoblastic phenotype, termed osteomimicry, as two strategies that PCa utilizes to create a favorable protected niche. Finally, we delineate future research that may help to deconstruct the complexity of PCa osteotropism.


Assuntos
Neoplasias Ósseas/secundário , Vesículas Extracelulares/metabolismo , Osteoblastos/patologia , Próstata/patologia , Neoplasias da Próstata/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cocultura , Vesículas Extracelulares/efeitos dos fármacos , Humanos , Masculino , Estadiamento de Neoplasias , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico
9.
Front Oncol ; 10: 627379, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33747899

RESUMO

Radiotherapy and surgery are curative treatment options for localized prostate cancer (PCa) with a 5-year survival rate of nearly 100%. Once PCa cells spread into distant organs, such as bone, the overall survival rate of patients drops dramatically. The metastatic cascade and organotropism of PCa cells are regulated by different cellular subtypes, organ microenvironment, and their interactions. This cross-talk leads to pre-metastatic niche formation that releases chemo-attractive factors enforcing the formation of distant metastasis. Biological characteristics of PCa metastasis impacting on metastatic sites, burden, and latency is of clinical relevance. Therefore, the implementation of modern hybrid imaging technologies into clinical routine increased the sensitivity to detect metastases at earlier stages. This enlarged the number of PCa patients diagnosed with a limited number of metastases, summarized as oligometastatic disease. These patients can be treated with androgen deprivation in combination with local-ablative radiotherapy or radiopharmaceuticals directed to metastatic sites. Unfortunately, the number of patients with disease recurrence is high due to the enormous heterogeneity within the oligometastatic patient population and the lack of available biomarkers with predictive potential for metastasis-directed radiotherapy. Another, so far unmet clinical need is the diagnosis of minimal residual disease before onset of clinical manifestation and/or early relapse after initial therapy. Here, monitoring of circulating and disseminating tumor cells in PCa patients during the course of radiotherapy may give us novel insight into how metastatic spread is influenced by radiotherapy and vice versa. In summary, this review critically compares current clinical concepts for metastatic PCa patients and discuss the implementation of recent preclinical findings improving our understanding of metastatic dissemination and radiotherapy resistance into standard of care.

10.
Nanoscale ; 11(41): 19408-19421, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31386739

RESUMO

Nanosystems are able to enhance bone regeneration, a complex process requiring the mutual interplay between immune and skeletal cells. Activated monocytes can communicate pro-osteogenic signals to mesenchymal stem cells and promote osteogenesis. Thus, the activation of monocytes is a promising strategy to improve bone regeneration. Nanomaterials specifically selected to provoke immune-mediated bone formation are still missing. As a proof of concept, we apply here the intrinsic immune-characteristics of graphene oxide (GO) with the well-recognized osteoinductive capacity of calcium phosphate (CaP) in a biocompatible nanomaterial called maGO-CaP (monocytes activator GO complexed with CaP). In the presence of monocytes, the alkaline phosphatase activity and the expression of osteogenic markers increased. Studying the mechanisms of action, we detected an up-regulation of Wnt and BMP signaling, two key osteogenic pathways. The role of the immune activation was evidenced by the over-production of oncostatin M, a pro-osteogenic factor produced by monocytes. Finally, we tested the pro-osteogenic effects of maGO-CaP in vivo. maGO-CaP injected into the tibia of mice enhanced local bone mass and the bone formation rate. Our study suggests that maGO-CaP can activate monocytes to enhance osteogenesis ex vivo and in vivo.


Assuntos
Materiais Biocompatíveis/química , Grafite/química , Animais , Materiais Biocompatíveis/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Fosfatos de Cálcio/química , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Oncostatina M/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tíbia/efeitos dos fármacos , Tíbia/metabolismo , Proteínas Wnt/metabolismo
11.
J Bone Oncol ; 16: 100237, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31011525

RESUMO

BACKGROUND: Semaphorin 4D (Sema4D) is a glycoprotein that inhibits bone formation and has been associated with cancer progression and the occurrence of bone metastases. Recently, Sema4D expression has been linked to estrogen signaling in breast cancer. Endocrine therapies like tamoxifen and aromatase inhibitors (AI) are a standard therapeutic approach in hormone receptor positive breast cancers. Tamoxifen exerts ER-agonistic effects on bone, whereas AI negatively affect bone health by increasing resorption and fracture risk. The effect of endocrine therapies on circulating Sema4D levels in breast cancer patients has not been investigated yet. METHODS: We measured circulating Sema4D plasma levels at primary diagnosis and in a follow-up sample 12 months after surgery in a cohort of 46 pre- and postmenopausal women with primary estrogen receptor positive breast cancer receiving adjuvant tamoxifen or AI. RESULTS: The mean baseline levels ± SD for Sema4D were 441.6 ±â€¯143.4 pmol/l. No significant differences in total plasma Sema4D were observed when stratifying the patients according to age, menopausal status, tumor subtype, nodal and hormone receptor status, or tumor size. However, Sema4D levels were significantly reduced by 28% (p<0.001) in tamoxifen treated patients 12 months after surgery, whereas no alteration was observed in patients treated with AI. CONCLUSION: This finding potentially represents an additional mechanism of the bone-protective properties of tamoxifen and further emphasizes a link between Sema4D and estrogen receptor signaling.

12.
Colloids Surf B Biointerfaces ; 172: 779-789, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30266012

RESUMO

Silica nanosheets (SiO2 NS) are considered to be a promising material in clinical practice for diagnosis and therapy applications. However, an appropriate surface functionalization is essential to guarantee high biocompatibility and molecule loading ability. Although SiO2 NS are chemically stable, its effects on immune systems are still being explored. In this work, we successfully synthesized a novel 2D multilayer SiO2 NS and SiO2 NS coated with carbon (C/SiO2 NS), and evaluated their impact on human Peripheral Blood Mononuclear Cells (PBMCs) and some immune cell subpopulations. We demonstrated that the immune response is strongly dependent on the surface functionalities of the SiO2 NS. Ex vivo experiments showed an increase in biocompatibility of C/SiO2 NS compared to SiO2 NS, resulting in a lowering of hemoglobin release together with a reduction in cellular toxicity and cellular activation. However, none of them are directly involved in the activation of the acute inflammation process with a consequent release of pro-inflammatory cytokines. The obtained results provide an important direction towards the biomedical applications of silica nanosheets, rendering them an attractive material for the development of future immunological therapies.


Assuntos
Carbono/farmacologia , Linfócitos/metabolismo , Nanopartículas/química , Dióxido de Silício/farmacologia , Adulto , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Carbono/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Linfócitos/efeitos dos fármacos , Pessoa de Meia-Idade , Nanopartículas/ultraestrutura , Espectroscopia Fotoeletrônica , Dióxido de Silício/química , Propriedades de Superfície , Fator de Necrose Tumoral alfa/metabolismo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA