Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res X ; 21: 100202, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38098880

RESUMO

Combined sewer overflows (CSOs) are an important pathway of organic micropollutants from urban areas to open water bodies. Understanding the temporal dynamics of these micropollutants during overflow events is crucial for applying appropriate sampling methods and implementing effective management strategies. Yet, little is known about the dynamics of micropollutants in CSOs, because most studies report concentrations from single grab samples or event mean concentrations (EMCs). With unique high temporal resolution measurements (3 min), we show the real dynamics of polar organic micropollutants in CSOs of one small (2,700 people: P) and one large (159,000 P) urban catchment, for two micropollutant categories: (i) 33 micropollutants in municipal wastewater and (ii) 13 micropollutants from urban surface runoff. The concentration dynamics depend on the substance source and the catchment size. Indoor substances such as pharmaceuticals show high temporal dynamics with changes of 1 to 2 orders of magnitude within 9 min in the CSO of the small catchment. In contrast, outdoor substances at the small catchment and all substances at the large catchment display considerably lower variation. We tested various time-proportional sampling strategies to assess the range of error when estimating EMCs. We recommend an interval of 3 min to capture the dynamics of indoor substances in CSOs from small catchments. The results highlight that both future monitoring campaigns and the planning and management of urban wet-weather treatment systems will benefit from high temporal sampling resolutions, not only to understand dynamics but also to minimize errors of estimated EMCs.

2.
Water Res ; 223: 118968, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988331

RESUMO

Urban wet-weather discharges from combined sewer overflows (CSO) and stormwater outlets (SWO) are a potential pathway for micropollutants (trace contaminants) to surface waters, posing a threat to the environment and possible water reuse applications. Despite large efforts to monitor micropollutants in the last decade, the gained information is still limited and scattered. In a metastudy we performed a data-driven analysis of measurements collected at 77 sites (683 events, 297 detected micropollutants) over the last decade to investigate which micropollutants are most relevant in terms of 1) occurrence and 2) potential risk for the aquatic environment, 3) estimate the minimum number of data to be collected in monitoring studies to reliably obtain concentration estimates, and 4) provide recommendations for future monitoring campaigns. We highlight micropollutants to be prioritized due to their high occurrence and critical concentration levels compared to environmental quality standards. These top-listed micropollutants include contaminants from all chemical classes (pesticides, heavy metals, polycyclic aromatic hydrocarbons, personal care products, pharmaceuticals, and industrial and household chemicals). Analysis of over 30,000 event mean concentrations shows a large fraction of measurements (> 50%) were below the limit of quantification, stressing the need for reliable, standard monitoring procedures. High variability was observed among events and sites, with differences between micropollutant classes. The number of events required for a reliable estimate of site mean concentrations (error bandwidth of 1 around the "true" value) depends on the individual micropollutant. The median minimum number of events is 7 for CSO (2 to 31, 80%-interquantile) and 6 for SWO (1 to 25 events, 80%-interquantile). Our analysis indicates the minimum number of sites needed to assess global pollution levels and our data collection and analysis can be used to estimate the required number of sites for an urban catchment. Our data-driven analysis demonstrates how future wet-weather monitoring programs will be more effective if the consequences of high variability inherent in urban wet-weather discharges are considered.


Assuntos
Metais Pesados , Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Metais Pesados/análise , Praguicidas/análise , Preparações Farmacêuticas , Hidrocarbonetos Policíclicos Aromáticos/análise , Chuva , Água/análise , Poluentes Químicos da Água/análise , Tempo (Meteorologia)
3.
Environ Sci Technol ; 54(17): 10840-10849, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32706580

RESUMO

On-site wastewater treatment plants (OSTs) are usually unattended, so failures often remain undetected and lead to prolonged periods of reduced performance. To stabilize the performance of unattended plants, soft sensors could expose faults and failures to the operator. In a previous study, we developed soft sensors and showed that soft sensors with data from unmaintained physical sensors can be as accurate as soft sensors with data from maintained ones. The monitored variables were pH and dissolved oxygen (DO), and soft sensors were used to predict nitrification performance. In the present study, we use synthetic data and monitor three plants to test these soft sensors. We find that a long solids retention time and a moderate aeration rate improve the pH soft-sensor accuracy and that the aeration regime is the main operational parameter affecting the accuracy of the DO soft sensor. We demonstrate that integrated design of monitoring and control is necessary to achieve robustness when extrapolating from one OST to another in the absence of plant-specific fine-tuning. Additionally, we provide a unique labeled dataset for further feature and data-driven soft-sensor development. Our benchmarking results indicate that it is feasible to monitor OSTs with unmaintained sensors and without plant-specific tuning of the developed soft sensors. This is expected to drastically reduce monitoring costs for OST-based sanitation systems.


Assuntos
Benchmarking , Purificação da Água , Nitrificação , Oxigênio
4.
Water Res ; 161: 639-651, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31254889

RESUMO

Sensor maintenance is time-consuming and is a bottleneck for monitoring on-site wastewater treatment systems. Hence, we compare maintained and unmaintained sensors to monitor the biological performance of a small-scale sequencing batch reactor (SBR). The sensor types are ion-selective pH, optical dissolved oxygen (DO), and oxidation-reduction potential (ORP) with platinum electrode. We created soft sensors using engineered features: ammonium valley for pH, oxidation ramp for DO, and nitrite ramp for the ORP. Four soft sensors based on unmaintained pH sensors correctly identified the completion of the ammonium oxidation (89-91 out of 107 cycles), about as many times as soft sensors based on a maintained pH sensor (91 out of 107 cycles). In contrast, the DO soft sensor using data from a maintained sensor showed slightly better (89 out of 96 cycles) detection performance than that using data from two unmaintained sensors (77, respectively 82 out of 96 correct). Furthermore, the DO soft sensor using maintained data is much less sensitive to the optimisation of cut-off frequency and slope tolerance than the soft sensor using unmaintained data. The nitrite ramp provided no useful information on the state of nitrite oxidation, so no comparison of maintained and unmaintained ORP sensors was possible in this case. We identified two hurdles when designing soft sensors for unmaintained sensors: i) Sensors' type- and design-specific deterioration affects performance. ii) Feature engineering for soft sensors is sensor type specific, and the outcome is strongly influenced by operational parameters such as the aeration rate. In summary, the results with the provided soft sensors show that frequent sensor maintenance is not necessarily needed to monitor the performance of SBRs. Without sensor maintenance monitoring small-scale SBRs becomes practicable, which could improve the reliability of unstaffed on-site treatment systems substantially.


Assuntos
Reatores Biológicos , Oxigênio , Concentração de Íons de Hidrogênio , Oxirredução , Reprodutibilidade dos Testes , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA